dc.contributor.author | Sur, Vishma Pratap | cs |
dc.contributor.author | Komínková, Markéta | cs |
dc.contributor.author | Buchtová, Žaneta | cs |
dc.contributor.author | Doleželíková, Kristýna | cs |
dc.contributor.author | Zítka, Ondřej | cs |
dc.contributor.author | Moulick, Amitava | cs |
dc.date.accessioned | 2020-08-04T11:03:49Z | |
dc.date.available | 2020-08-04T11:03:49Z | |
dc.date.issued | 2019-10-31 | cs |
dc.identifier.citation | Nanomaterials. 2019, vol. 9, issue 10, p. 1-15. | en |
dc.identifier.issn | 2079-4991 | cs |
dc.identifier.other | 160566 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/184080 | |
dc.description.abstract | The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel "green" route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 degrees C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance. | en |
dc.format | text | cs |
dc.format.extent | 1-15 | cs |
dc.format.mimetype | application/pdf | cs |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Nanomaterials | cs |
dc.relation.uri | https://www.mdpi.com/2079-4991/9/10/1463 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | biosynthesis | en |
dc.subject | tryptone | en |
dc.subject | QDs | en |
dc.subject | cell-penetrating peptide | en |
dc.subject | antibacterial | en |
dc.title | CdSe QD biosynthesis in yeast using tryptone-enriched media and their conjugation with a peptide hecate for bacterial detection and killing | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Chytré nanonástroje | cs |
sync.item.dbid | VAV-160566 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2020.08.04 13:03:48 | en |
sync.item.modts | 2020.08.04 12:20:31 | en |
dc.coverage.issue | 10 | cs |
dc.coverage.volume | 9 | cs |
dc.identifier.doi | 10.3390/nano9101463 | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2079-4991/ | cs |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |