A Variable Step-size CLMS Algorithm and Its Analysis

Loading...
Thumbnail Image
Date
2020-04
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
In this paper, a hyperbolic tangent variable step-size convex combination of the least mean square (HTVSCLMS) algorithm is proposed and analyzed. This work avoids the compromise between the convergence speed and the steady-state error for two filters in convex combination of the least mean square (CLMS) algorithm. In the proposed algorithm, the big step-size filter is replaced by a filter whose iteration step-size is a modified function based on hyperbolic tangent function. Thus it constructs hyperbolic tangent nonlinear relationship between step-size and error. At the same time, the small step-size filter remains unchanged but fixed. So, it conquers the slow convergence speed and the weak anti-interference ability of fixed step-size CLMS. Simulation results show that HTVSCLMS algorithm, compared with CLMS algorithm and variable step-size CLMS (VSCLMS) algorithm, not only has superior capability of tracking in the presence of noise and in a stable and even non-stable environment, but also can maintain a better convergence.
Description
Citation
Radioengineering. 2020 vol. 29, č. 1, s. 182-188. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/20_01_0182_0188.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO