Position-Specific Statistics of 60 GHz Vehicular Channels During Overtaking

Abstract
The time-variant vehicle-to-vehicle radio propagation channel in the frequency band from 59.75 to 60.25 GHz has been measured in an urban street in the city center of Vienna, Austria. We have measured a set of 30 vehicle-to-vehicle channel realizations to capture the effect of an overtaking vehicle. Our experiment was designed for characterizing the large-scale fading and the small-scale fading depending on the overtaking vehicle's position. We demonstrate that large overtaking vehicles boost the mean receive power by up to 10 dB. The analysis of the small-scale fading reveals that the two-wave with diffuse power (TWDP) fading model is adequate. By means of the model selection, we demonstrate the regions where the TWDP model is more favorable than the customarily used the Rician fading model. Furthermore, we analyze the time selectivity of our vehicular channel. To precisely define the Doppler and delay resolutions, a multitaper spectral estimator with discrete prolate spheroidal windows is used. The delay and Doppler profiles are inferred from the estimated local scattering function. Spatial filtering by the transmitting horn antenna decreases the delay and Doppler spread values. We observe that the RMS Doppler spread is below one-tenth of the maximum Doppler shift 2f v/c. For example, at 60 GHz, a relative speed of 30 km/h yields a maximum Doppler shift of approximately 3300 Hz. The maximum RMS Doppler spread of all observed vehicles is 450 Hz; the largest observed RMS delay spread is 4 ns.
Description
Citation
IEEE Access. 2019, vol. 7, issue 1, p. 14216-14232.
https://ieeexplore.ieee.org/document/8612933
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO