Atomic Layer Deposition of MoSe2 Using New Selenium Precursors

Abstract
Among the emerging 2D materials, transition metal chalcogenides are particularly encouraging as alternative semiconducting graphene-like nanomaterial. Recently, 2D MoSe2 has been gaining interest due to its intriguing properties, in many ways exceeding those of the extensively studied MoS2. The deposition of 2D nanomaterials in a conformal and uniform fashion on complex-shaped nanostructures is highly appealing but only achievable by atomic layer deposition (ALD). Unfortunately, the synthesis of MoSe2 by ALD is hindered by a current substantial lack of feasible Se precursors. In this work, we synthesized a set of alkysilyl (R3Si)2Se and alkylstannyl (R3Sn)2Se compounds and studied their suitability as Se ALD precursors. Thus, ALD processes carried out using MoCl5 as Mo precursor counterpart were followed by an extensive characterization of the as deposited material. The corresponding results revealed successful deposition of MoSe2 nanostructures on substrates of different nature with dominant out-of-plane orientation. Eventually, the growth evolution of the MoSe2 during the very early ALD stage was studied and described, displaying concomitant in-plane and out-of-plane MoSe2 growth. All in all, a set of suitable Se precursors presented herein paves the way for the deposition of 2D MoSe2 with all the own ALD benefits and allow the further study of its promising properties in a wide number of applications.
Description
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO