Show simple item record

dc.contributor.authorPaseka, Jan
dc.contributor.authorJanda, Jiří
dc.date.accessioned2013-03-04T16:10:48Z
dc.date.available2013-03-20T06:00:07Z
dc.date.issued2012cs
dc.identifier.citationMathematics for Applications. 2012, 1, č. 1, s. 79-89. ISSN 1805-3629.cs
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/19543
dc.description.abstractTense operators for MV-algebras were introduced by Diaconescu and Georgescu. Based on their de nition Chajda and Kola r k presented the de nition of tense operators for lattice e ect algebras. Chajda and Paseka tackled the problem of axiomatizing tense operators on an e ect algebra by introducing the notion of a partial dynamic e ect algebra. They also gave representation theorems for dynamic e ect algebras. We continue to extend their work for partial S-dynamic e ect algebras i.e. in the case when tense operators satisfy required conditions also for the dual e ect algebraic operation . We show that whenever tense operators are total our stronger notion coincides with their de nition. We give also a representation theorem for partial S-dynamic e ect algebras and its version for strict dynamic e ect algebras.en
dc.formattextcs
dc.format.extent79-89cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics of Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/1_1/79_89.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.titleA dynamic Effect Algebras with Dual Operationen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
dc.coverage.issue1cs
dc.coverage.volume1cs
dc.identifier.doi10.13164/ma.2012.05en
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record