Show simple item record

dc.contributor.authorHnízdil, Milancs
dc.contributor.authorKomínek, Jancs
dc.contributor.authorLee, Taewoocs
dc.contributor.authorRaudenský, Miroslavcs
dc.contributor.authorČarnogurská, Máriacs
dc.contributor.authorChabičovský, Martincs
dc.date.accessioned2020-11-25T15:54:35Z
dc.date.available2020-11-25T15:54:35Z
dc.date.issued2020-11-22cs
dc.identifier.citationMetals. 2020, vol. 10, issue 11, p. 1-12.en
dc.identifier.issn2075-4701cs
dc.identifier.other166111cs
dc.identifier.urihttp://hdl.handle.net/11012/195693
dc.description.abstractSpray cooling of hot steel surfaces is an inherent part of continuous casting and heat treatment. When we consider the temperature interval between room temperature and for instance 1000 degrees C, different boiling regimes can be observed. Spray cooling intensity rapidly changes with the surface temperature. Secondary cooling in continuous casting starts when the surface temperature is well above a thousand degrees Celsius and a film boiling regime can be observed. The cooled surface is protected from the direct impact of droplets by the vapour layer. As the surface temperature decreases, the vapour layer is less stable and for certain temperatures the vapour layer collapses, droplets reach the hot surface and heat flux suddenly jumps enormously. It is obvious that the described effect has a great effect on control of cooling. The surface temperature which indicates the sudden change in the cooling intensity is the Leidenfrost temperature. The Leidenfrost temperature in spray cooling can occur anywhere between 150 degrees C and over 1000 degrees C and depends on the character of the spray. This paper presents an experimental study and shows function for prediction of the Leidenfrost temperature based on spray parameters. Water impingement density was found to be the most important parameter. This parameter must be combined with information about droplet size and velocity to produce a good prediction of the Leidenfrost temperature.en
dc.formattextcs
dc.format.extent1-12cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMetalscs
dc.relation.urihttps://www.mdpi.com/2075-4701/10/11/1551cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectspray coolingen
dc.subjectLeidenfrost temperatureen
dc.subjectcontinuous castingen
dc.subjectheat treatmenten
dc.subjectmist coolingen
dc.subjectexperimentalen
dc.titlePrediction of Leidenfrost Temperature in Spray Cooling for Continuous Casting and Heat Treatment Processesen
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
sync.item.dbidVAV-166111en
sync.item.dbtypeVAVen
sync.item.insts2021.02.10 12:59:23en
sync.item.modts2021.02.10 12:16:51en
dc.coverage.issue11cs
dc.coverage.volume10cs
dc.identifier.doi10.3390/met10111551cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2075-4701/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International