Show simple item record

dc.contributor.authorKureš, Miroslavcs
dc.date.accessioned2021-03-19T07:55:04Z
dc.date.available2021-03-19T07:55:04Z
dc.date.issued2021-03-16cs
dc.identifier.citationNotes on Number Theory and Discrete Mathematics. 2021, vol. 27, issue 1, p. 14-21.en
dc.identifier.issn1310-5132cs
dc.identifier.other170648cs
dc.identifier.urihttp://hdl.handle.net/11012/196472
dc.description.abstractThe remarkable property of the number 3435, namely 3435 = 3^3 + 4^4 + 3^3 + 5^5, was formalized to the notion of Münchhausen numbers. Properties of these numbers are studied and it is showed that although there are only finitely many Münchhausen numbers in a given base b, there are infinitely manyMünchhausen numbers of the length 2 in all bases. A certain reversion in the definition gives the notion of so-called anti-Münchhausen numbers, search for them is computationally more effectiveen
dc.formattextcs
dc.format.extent14-21cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherBulgarian Academy of Sciencescs
dc.relation.ispartofNotes on Number Theory and Discrete Mathematicscs
dc.relation.urihttp://nntdm.net/volume-27-2021/number-1/14-21/cs
dc.rights(C) Bulgarian Academy of Sciencescs
dc.subjectMünchhausen numberen
dc.subjectnarcissistic numberen
dc.subjectsums of powers of integersen
dc.titleOn Münchhausen numbersen
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
sync.item.dbidVAV-170648en
sync.item.dbtypeVAVen
sync.item.insts2021.05.17 08:53:10en
sync.item.modts2021.05.17 08:14:12en
dc.coverage.issue1cs
dc.coverage.volume27cs
dc.identifier.doi10.7546/nntdm.2021.27.1.14-21cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1310-5132/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record