dc.contributor.author Štigler, Jaroslav cs dc.date.accessioned 2021-09-22T14:57:29Z dc.date.available 2021-09-22T14:57:29Z dc.date.issued 2021-05-14 cs dc.identifier.citation Water. 2021, vol. 13, issue 10, p. 1-27. en dc.identifier.issn 2073-4441 cs dc.identifier.other 172540 cs dc.identifier.uri http://hdl.handle.net/11012/201645 dc.description.abstract The derivation of the mean velocity profile for a given vorticity distribution over the pipe cross-section is presented in this paper1. The velocity profile and the vorticity distribution are axisymmetric, which means that the radius is the only variable. The importance of the vortex field for the flow analysis is discussed in the paper. The polynomial function with four free parameters is chosen for the vorticity distribution. Free parameters of this function are determined using boundary conditions. There are also two free exponents in the polynomial. These exponents are determined based on the comparison of this analytical formula with experimental data. Experimental data are taken from the Princeton superpipe data which consist of 26 velocity profiles for a wide range of Reynolds numbers (Re). This analytical formula for the mean velocity profile is more precise than the previous one and it is possible to use it for the wide range of Reynolds number <31,577; 35,259,000>. This formula is easy to use, to integrate, or to derivate. The empirical formulas for the profile parameters as a function of Re are also included in this paper. All information for the mean velocity profile prediction in the mentioned Re range are in the paper. It means that it is necessary to know the average velocity v((av)), the pipe radius R, and Re to be able to predict the turbulent mean velocity profile in a pipe. en dc.format text cs dc.format.extent 1-27 cs dc.format.mimetype application/pdf cs dc.language.iso en cs dc.publisher MDPI cs dc.relation.ispartof Water cs dc.relation.uri https://www.mdpi.com/2073-4441/13/10/1372 cs dc.rights Creative Commons Attribution 4.0 International cs dc.rights.uri http://creativecommons.org/licenses/by/4.0/ cs dc.subject fluid flow in pipe en dc.subject turbulent mean velocity profile en dc.subject vorticity en dc.title Analytical Formula for the Mean Velocity Profile in a Pipe Derived on the Basis of a Spatial Polynomial Vorticity Distribution en thesis.grantor Vysoké učení technické v Brně. Fakulta strojního inženýrství. EÚ-odbor fluidního inženýrství Viktora Kaplana cs sync.item.dbid VAV-172540 en sync.item.dbtype VAV en sync.item.insts 2022.02.07 12:54:57 en sync.item.modts 2022.02.07 12:14:51 en dc.coverage.issue 10 cs dc.coverage.volume 13 cs dc.identifier.doi 10.3390/w13101372 cs dc.rights.access openAccess cs dc.rights.sherpa http://www.sherpa.ac.uk/romeo/issn/2073-4441/ cs dc.type.driver article en dc.type.status Peer-reviewed en dc.type.version publishedVersion en
﻿

### This item appears in the following Collection(s)

Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International