Show simple item record

dc.contributor.authorBayer, Robertcs
dc.contributor.authorMaxa, Jiřícs
dc.contributor.authorŠabacká, Pavlacs
dc.date.accessioned2021-09-29T14:55:46Z
dc.date.available2021-09-29T14:55:46Z
dc.date.issued2021-09-09cs
dc.identifier.citationSENSORS. 2021, vol. 21, issue 18, p. 1-15.en
dc.identifier.issn1424-8220cs
dc.identifier.other172563cs
dc.identifier.urihttp://hdl.handle.net/11012/201675
dc.description.abstractIn this paper, we describe the possibility of using the energy of a compressed air flow, where cryogenic temperatures are achieved within the flow behind the nozzle, when reaching a critical flow in order to maximize the energy gained. Compared to the energy of compressed air, the energy obtained thermoelectrically is negligible, but not zero. We are therefore primarily aiming to maximize the use of available energy sources. Behind the aperture separating regions with a pressure difference of several atmospheres, a supersonic flow with a large temperature drop develops. Based on the Seebeck effect, a thermocouple is placed in these low temperatures to create a thermoelectric voltage. This paper contains a mathematical-physical analysis for proper nozzle design, controlled gas expansion and ideal placement of a thermocouple within the flow for best utilization of the low temperature before a shockwave formation. If the gas flow passes through a perpendicular shockwave, the velocity drops sharply and the gas pressure rises, thereby increasing the temperature. In contrast, with a conical shockwave, such dramatic changes do not occur and the cooling effect is not impaired. This article also contains analyses for proper forming of the head shape of the thermocouple to avoid the formation of a detached shockwave, which causes temperature stagnation resulting in lower thermocouple cooling efficiency.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofSENSORScs
dc.relation.urihttps://www.mdpi.com/1424-8220/21/18/6031cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectPeltier-Seebeck effecten
dc.subjectLaval nozzleen
dc.subjectharvester thermocoupleen
dc.subjectconical shockwaveen
dc.subjectperpendicularen
dc.subjectdetached shockwaveen
dc.subjectenergy harvestingen
dc.titleEnergy Harvesting Using Thermocouple and Compressed Airen
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav elektrotechnologiecs
thesis.grantorVysoké učení technické v Brně. . Ústav přístrojové techniky AV ČRcs
sync.item.dbidVAV-172563en
sync.item.dbtypeVAVen
sync.item.insts2021.10.27 16:56:54en
sync.item.modts2021.10.27 16:14:46en
dc.coverage.issue18cs
dc.coverage.volume21cs
dc.identifier.doi10.3390/s21186031cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1424-8220/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International