Show simple item record

dc.contributor.authorVild, Martincs
dc.contributor.authorChalupa, Vojtěchcs
dc.contributor.authorŠabatka, Lubomírcs
dc.contributor.authorWald, Františekcs
dc.date.accessioned2022-03-08T19:54:13Z
dc.date.available2022-03-08T19:54:13Z
dc.date.issued2021-06-16cs
dc.identifier.citationModern Trends in Research on Steel, Aluminium and Composite Structures. 2021, p. 378-384.en
dc.identifier.isbn9781003132134cs
dc.identifier.other173011cs
dc.identifier.urihttp://hdl.handle.net/11012/203017
dc.description.abstractThe compressive resistance of truss members connected by gusset plates is estimated by taking the buckling length of the member equal to the member length. Usually, no check is provided for the gusset plate, although several design methods were proposed in the past. The paper presents an advanced member analysis, a design-oriented finite element method of a member including its joints. Geometrically and materially nonlinear analysis with imperfections is used to determine the load resistance of the joint-member-joint subsystem. Component-based Finite Element Method is used for joints; i.e. bolts and welds are modeled by nonlinear springs with properties based on design codes. The advanced analysis is demonstrated on two cases. The buckling length of angles, vastly used for masts, may be assumed smaller than the theoretical length if the boundary conditions determined by bolted gusset plates provide sufficient stiffness. The experiments and detailed numerical analysis performed at the Graz University of Technology are used for validation of the advanced analysis. The buckling resistance of gusset plates may govern the compressive resistance of the bracing. The experiments performed at the Czech Technical University in Prague (Vesecký), together with analytical design methods, are used for validation of buckling resistance of bolted eccentric gusset plate joints of circular hollow section braces. The results depend on the chosen shape and amplitude of initial imperfections. Using recommended procedures, the proposed method provides results very close to the experiments.en
dc.formattextcs
dc.format.extent378-384cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherTaylor & Franciscs
dc.relation.ispartofModern Trends in Research on Steel, Aluminium and Composite Structurescs
dc.relation.urihttps://www.taylorfrancis.com/chapters/oa-edit/10.1201/9781003132134-48/advanced-analysis-members-gusset-plate-joints-vild-chalupa-%C5%A1abatka-waldcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectMultilevel designen
dc.subjectgusset plate jointsen
dc.subjectGMNIAen
dc.titleAdvanced analysis of members with gusset plate jointsen
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav kovových a dřevěných konstrukcícs
sync.item.dbidVAV-173011en
sync.item.dbtypeVAVen
sync.item.insts2022.03.08 20:54:13en
sync.item.modts2022.03.08 20:15:08en
dc.identifier.doi10.1201/9781003132134-48cs
dc.rights.accessopenAccesscs
dc.type.driverbookParten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International