Show simple item record

dc.contributor.authorKharicha, Abdellahcs
dc.contributor.authorKarimi-Sibaki, Ebrahimcs
dc.contributor.authorVakhrushev, Alexandercs
dc.contributor.authorWu, Menghuaics
dc.contributor.authorLudwig, Andreascs
dc.contributor.authorBoháček, Jancs
dc.date.accessioned2021-12-14T15:55:53Z
dc.date.available2021-12-14T15:55:53Z
dc.date.issued2021-04-09cs
dc.identifier.citationHEAT AND MASS TRANSFER. 2021, vol. 57, issue 7, p. 1-9.en
dc.identifier.issn0947-7411cs
dc.identifier.other171383cs
dc.identifier.urihttp://hdl.handle.net/11012/203216
dc.description.abstractA fully coupled model is proposed to investigate the influence of flow on electrochemical mass transfer at the interface between the electrolyte and an electrically conductive droplet. The electric current flows through the droplet, and consequently the droplet acts as both anode and cathode. Computations of flow, concentration of reactant, and electric current density fields were carried out. Various droplet sizes (0.5, 2, 4 mm) under different flow regimes considering Reynolds number (Re=0.2, 2, 20, 40 and 80) were investigated. An iterative numerical method is proposed to determine the concentration of reactant and electric current density at droplet-electrolyte interface considering the reaction kinetics (Butler-Volmer) formula and the diffusion-advection of the reactant through the hydrodynamic boundary layer around the droplet. With the increase of Reynolds number, the amount of electric current density which flows through the droplet increases. It is found that the mass transfer at droplet-electrolyte interface is controlled by reaction kinetics for the small droplet (0.5 mm). However, the diffusion of the reactant governs the efficiency of mass transfer with the increase of the droplet size (2 and 4 mm). With the increase of Reynolds number, the anodic area on the surface of droplet is enlarged.en
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofHEAT AND MASS TRANSFERcs
dc.relation.urihttps://link.springer.com/content/pdf/10.1007/s00231-021-03071-4.pdfcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectelectrochemical mass transferen
dc.subjectelectrically conductiveen
dc.subjectelectrolyte interfacesen
dc.titleHydrodynamically enhanced electrochemical mass transfer on the surface of an electrically conductive dropleten
thesis.grantorVysoké učení technické v Brně. . Montanuniversität Leobencs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
sync.item.dbidVAV-171383en
sync.item.dbtypeVAVen
sync.item.insts2021.12.14 16:55:53en
sync.item.modts2021.12.14 16:15:16en
dc.coverage.issue7cs
dc.coverage.volume57cs
dc.identifier.doi10.1007/s00231-021-03071-4cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0947-7411/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International