High-energy ball milling and spark plasma sintering of molybdenum - lanthanum oxide (Mo-La2O3) and molybdenum - lanthanum zirconate (Mo-La2Zr2O7) composite powders
Abstract
The current study is focused on the preparation of Mo-10 vol%La2O3 and Mo-10 vol% La2Zr2O7 composite powders via low- and high-energy ball milling approaches as potential candidates for near-future high-temperature structural applications. The mechanical milling parameters play a critical role on the final powder's microstructure. When using the high-energy milling mode (using 800 rpm, ball-to-powder ratio (BPR) 100: 6), the homogeneous powder agglomerates are formed with refined laminated microstructure and more uniform ceramic phase distribution in both Mo-La2O3 and Mo-La2Zr2O7 systems compared to the powders produced by means of the low-energy milling mode (using 350 rpm, BPR 100: 6), where inhomogeneous powder mixture with less embedding of ceramic phases into Mo agglomerates was obtained. This study also focuses on the evaluation of high-temperature phase and microstructural stability of the produced composite powders treated at the temperature of 1300 degrees C under the different gaseous environments, including ambient, inert and reducing atmospheres. The Mo-10 vol% La2Zr2O7 composite powder exhibited better thermal stability during the high-temperature exposure in all tested atmospheres in comparison with the Mo-La2O3 composite powder, since it revealed less intensive formation of the intermediate phases, such as lanthanum oxymolybdates. Therefore, the Mo-10 vol%La2Zr2O7 composite powder was used further for consolidation by means of spark plasma sintering at 1600 degrees C. The successful production of Mo-La2Zr2O7 composite with homogeneous distribution of ceramic phase, the grain size about of 5 mu m, and hardness of 3.4 GPa was not reported so far.
Keywords
Molybdenum, Lanthanum oxide, Lanthanum zirconium oxide, High-energy milling, Thermal stability, Spark plasma sinteringPersistent identifier
http://hdl.handle.net/11012/203541Document type
Peer reviewedDocument version
PostprintFulltext will be available on 27. 10. 2023
Source
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS. 2022, vol. 102, issue 1, p. 1-13.https://www.sciencedirect.com/science/article/pii/S0263436821002493