On a subclass of bi-close-to-convex functions by means of the Gegenbauer polynomial
Abstract
In this paper, we express a new subcollection of bi-close-to-convex functions by means of Gegenbauer polynomials in the open unit disc U. Further, several related outcomes such as coefficient bounds and Fekete–Szegő inequalities are obtained.
Keywords
analytic functions, bi-univalent functions, Fekete–Szegő problem, Gegenbauer polynomials, coefficient bounds, subordinationPersistent identifier
http://hdl.handle.net/11012/203928Document type
Peer reviewedDocument version
Final PDFSource
Mathematics for Applications. 2021 vol. 10, č. 2, s. 93-101. ISSN 1805-3629http://ma.fme.vutbr.cz/archiv/10_2/ma_10_2_alamoush_bulut_final.pdf
Collections
- 2021/2 [6]