Show simple item record

dc.contributor.authorSharma, Shruti
dc.contributor.authorYoon, Wonsik
dc.date.accessioned2022-04-29T07:44:22Z
dc.date.available2022-04-29T07:44:22Z
dc.date.issued2022-04cs
dc.identifier.citationRadioengineering. 2022 vol. 31, č. 1, s. 155-163. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/204143
dc.description.abstractMultiobjective optimization has become a suitable method to resolve conflicting objectives and enhance the performance evaluation of wireless networks. In this study, we consider a multiobjective reinforcement learning (MORL) approach for the resource allocation and energy consumption in C-RANs. We propose the MORL method with two conflicting objectives. Herein, we define the state and action spaces, and reward for the MORL agent. Furthermore, we develop a Q-learning algorithm that controls the ON-OFF action of remote radio heads (RRHs) depending on the position and nearby users with goal of selecting the best single policy that optimizes the trade-off between EE and QoS. We analyze the performance of our Q-learning algorithm by comparing it with simple ON-OFF scheme and heuristic algorithm. The simulation results demonstrated that normalized ECs of simple ON-OFF, heuristic and Q-learning algorithm were 0.99, 0.85, and 0.8 respectively. Our proposed MORL-based Q-learning algorithm achieves superior EE performance compared with simple ON-OFF scheme and heuristic algorithms.en
dc.formattextcs
dc.format.extent155-163cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2022/22_01_0155_0163.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectConvergenceen
dc.subjectenergy consumptionen
dc.subjectreinforcement learningen
dc.subjectrewarden
dc.subjectoptimizationen
dc.titleMultiobjective Reinforcement Learning Based Energy Consumption in C-RAN enabled Massive MIMOen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue1cs
dc.coverage.volume31cs
dc.identifier.doi10.13164/re.2022.0155en
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International license
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International license