Parallel Genetic Algorithms' Implementation Using a Scalable Concurrent Operation in Python

Loading...
Thumbnail Image
Date
2022-03-20
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
This paper presents an implementation of the parallelization of genetic algorithms. Three models of parallelized genetic algorithms are presented, namely the Master-Slave genetic algorithm, the Coarse-Grained genetic algorithm, and the Fine-Grained genetic algorithm. Furthermore, these models are compared with the basic serial genetic algorithm model. Four modules, Multiprocessing, Celery, PyCSP, and Scalable Concurrent Operation in Python, were investigated among the many parallelization options in Python. The Scalable Concurrent Operation in Python was selected as the most favorable option, so the models were implemented using the Python programming language, RabbitMQ, and SCOOP. Based on the implementation results and testing performed, a comparison of the hardware utilization of each deployed model is provided. The results' implementation using SCOOP was investigated from three aspects. The first aspect was the parallelization and integration of the SCOOP module into the resulting Python module. The second was the communication within the genetic algorithm topology. The third aspect was the performance of the parallel genetic algorithm model depending on the hardware.
Description
Citation
SENSORS. 2022, vol. 22, issue 6, p. 1-19.
https://www.mdpi.com/1424-8220/22/6/2389
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO