• čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • English 
    • čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • Login
View Item 
  •   Repository Home
  • Závěrečné práce
  • diplomové práce
  • Fakulta elektrotechniky a komunikačních technologií
  • 2022
  • View Item
  •   Repository Home
  • Závěrečné práce
  • diplomové práce
  • Fakulta elektrotechniky a komunikačních technologií
  • 2022
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifikace segmentů supraventrikulárních tachykardií pomocí metody multiple-instance learning

Identification of supraventricular tachycardia segments using multiple-instance learning

Thumbnail
View/Open
review_142091.html (8.859Kb)
final-thesis.pdf (4.262Mb)
appendix-1.zip (3.891Mb)
Author
Abbrent, Jakub
Advisor
Ronzhina, Marina
Referee
Novotná, Petra
Grade
D
Altmetrics
Metadata
Show full item record
Abstract
Supraventrikulární tachykardie mají v populaci vysokou incidenci a často způsobují zhoršení zdravotního stavu. Cílem této diplomové práce je automaticky detekovat a lokalizovat paroxysmální fibrilace síní v záznamech EKG. Algoritmus implementovaný v jazyce Python používá k detekci konvoluční neuronovou síť ResNet s využitím multi-instančního učení a rozhodovacích pravidel. K lokalizaci slouží výstup detekce v podobě feature signálu. Při klasifikaci bylo na testovací množině dosaženo F1 skóre 0,87. Následně byly lokalizovány paroxysmální fibrilace síní s odchylkou -0,40±2,26 sekund pro začátky a 1,09±2,75 sekund pro konce epizod. V závěru práce jsou získané výsledky vyhodnoceny a diskutovány.
 
Supraventricular tachycardias have a high incidence in the population and often cause health disorders. The aim of this thesis is to automatically detect and localize atrial fibrillation in ECG records. The algorithm, implemented in Python, uses a convolutional neural network ResNet for detection with multiple-instance learning and decision rules. The output of the detection in the form of a feature signal is used for localization. The classification achieved F1 score of 0.87 on the test dataset. Then, paroxysmal atrial fibrillation was localized with a deviation of -0.40±2.26 seconds for the onsets and 1.09±2.75 seconds for the terminations of the episodes. Lastly, the obtained results are evaluated and discussed.
 
Keywords
EKG, fibrilace síní, hluboké učení, konvoluční neuronové sítě, ResNet, multi-instanční učení, feature signál, ECG, atrial fibrillation, deep learning, convolutional neural networks, ResNet, multiple-instance learning, feature signal
Language
čeština (Czech)
Study brunch
bez specializace
Composition of Committee
prof. Pharm.Dr. Petr Babula, Ph.D. (předseda) Ing. Marina Ronzhina, Ph.D. (místopředseda) Ing. Roman Jakubíček, Ph.D. (člen) Ing. Jan Červený, Ph.D. (člen) Mgr. Ing. Karel Sedlář, Ph.D. (člen) Mgr. Bc. Darina Čejková, Ph.D. (člen)
Date of defence
2022-06-08
Process of defence
Student prezentoval výsledky své práce a komise byla seznámena s posudky. Prof. Babula položil otázku, jak byste mohl se zpracovávanými záznamy dále pracovat? Šlo by rozlišovat jednotlivé typy supraventrikulárních arytmií. Ing. Jakubíček položil otázku, co se děje v bloku klasifikace? Kde je multi-instance learning? Kde jste použil drop out? Co znamená komprimovaný čas? Student obhájil diplomovou práci s výhradami a odpověděl na otázky členů komise a oponenta.
Result of the defence
práce byla úspěšně obhájena
Persistent identifier
http://hdl.handle.net/11012/204914
Source
ABBRENT, J. Identifikace segmentů supraventrikulárních tachykardií pomocí metody multiple-instance learning [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2022.
Collections
  • 2022 [275]
Citace PRO

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV
 

 

Browse

All of repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV