• čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • English 
    • čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • Login
View Item 
  •   Repository Home
  • Závěrečné práce
  • bakalářské práce
  • Fakulta informačních technologií
  • 2022
  • View Item
  •   Repository Home
  • Závěrečné práce
  • bakalářské práce
  • Fakulta informačních technologií
  • 2022
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Holistické rozpoznání registrační značky pomocí konvolučních neuronových sítí

Holistic License Plate Recognition Based on Convolution Neural Networks

Thumbnail
View/Open
review_145236.html (1.487Kb)
final-thesis.pdf (4.862Mb)
Posudek-Vedouci prace-24954_v.pdf (86.43Kb)
Posudek-Oponent prace-24954_o.pdf (89.01Kb)
Author
Morbitzer, Dušan
Advisor
Špaňhel, Jakub
Referee
Juránek, Roman
Grade
D
Altmetrics
Metadata
Show full item record
Abstract
Cílem této práce je vytvoření modelu neuronové sítě pro holistické rozpoznávání registračních značek se zaměřením na přesnost a zkrácení doby trénovacího procesu. Model byl implementován, jako spojení konvoluční neuronové sítě pro extrakci hlubokých rysů obrázku značky a Bidirectional LSTM s CTC. Natrénovaný model byl porovnán s jinou implementací, využívající holistického přístupu, která byla natrénována na stejném datasetu. Vlastní návrh sítě dosáhl lepších výsledků při rozpoznávání na datové sadě, odlišné od trénovací, s chybovostí 8,3 %.
 
The goal of this work is to create a model of neural network for holistic recognition of license plates, focused on accuracy and shortening of the learning process. The model was implemented as a union of convolutional neural network for extraction of deep features of a plate and Bidirectional LSTM with CTC. The trained model was compared to another implementation using a holistic approach, that was trained on the same dataset. My design of the network achieved better results in recognition on a dataset, which is different from the training one, with an error rate of 8.3 %.
 
Keywords
konvoluční neuronové sítě, Bidirectional LSTM, CTC, Python, Keras, TensorFlow, zpracování obrazu, rozpoznání registrační značky, deep learning, convolutional neural networks, Bidirectional LSTM, CTC loss, Python, Keras, TensorFlow, image processing, license plate recognition, deep learning
Language
čeština (Czech)
Study brunch
Informační technologie
Composition of Committee
doc. Ing. Martin Čadík, Ph.D. (předseda) doc. Ing. Radek Burget, Ph.D. (místopředseda) Ing. David Bařina, Ph.D. (člen) doc. RNDr. Milan Češka, Ph.D. (člen) Ing. Vojtěch Mrázek, Ph.D. (člen)
Date of defence
2022-06-14
Process of defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm D. Otázky u obhajoby: V navrženém schématu trénování se po určitém počtu epoch mění velikost dávky a learning rate. Ale z experimentů je vidět, že např. 3 část (zelená v Obr. 4.10) výrazně zhoršuje vlastnosti. Čím to je? Jak byste to řešil? Je vůbec nutné takto rozdělovat trénování na několik částí? Existují jiné prostředky dosáhnout podobného efektu?
Result of the defence
práce byla úspěšně obhájena
Persistent identifier
http://hdl.handle.net/11012/207363
Source
MORBITZER, D. Holistické rozpoznání registrační značky pomocí konvolučních neuronových sítí [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2022.
Collections
  • 2022 [309]
Citace PRO

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV
 

 

Browse

All of repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV