Computational Simulation of Mechanical Behaviour of Endothelial Cells

Abstract
Ateroskleróza je v rozvinutém světě hlavní příčinou úmrtí a finančně zatěžuje zdravotnické systémy po celém světě. Převládající hemodynamické působení spolu s lokální koncentrací mechanického napětí hrají důležitou roli v lokální povaze aterosklerózy a jejím rozvoji ve specifických oblastech lidských cév. Endotel v krevních cévách je tvořen tenkou vrstvou buněk, ležící na rozhraní mezi krevním řečištěm a cévní stěnou. Dysfunkce endoteliálních buněk se podílí na hlavních patologiích. Například ateroskleróza se rozvíjí, když jsou narušeny bariérové a protizánětlivé funkce endotelu, což umožňuje akumulaci cholesterolu a dalších materiálů v arteriální stěně. U rakoviny je klíčovým krokem v růstu nádoru jeho vaskularizace a proces migrace endoteliálních buněk. Mechanické zatížení endoteliálních buněk hraje klíčovou roli v jejich funkci a dysfunkci. Počítačové modelování může zlepšit porozumění buněčné mechanice a tím přispět k poznání vztahů mezi strukturou a funkcí různých typů buněk v různých stavech. K dosažení tohoto cíle jsou v této práci navrženy konečnoprvkové modely endoteliálních buněk, tj. model buněk plovoucích v roztoku a model buněk přilnutých k podložce, které objasňují reakci buňky na globální mechanické zatížení, jako je tah a tlak, jakož i model buňky s jeho přirozeným tvarem uvnitř endoteliální vrstvy. Zachovávají hlavní principy tensegritních struktur, jako je předpětí a spolupůsobení jednotlivých součástí, ale prvky se mohou organizovat vzájemně nezávisle. Při implementaci nedávno navržené bendo-tensegritní koncepce uvažují tyto modely namáhání mikrotubulů nejen v tahu/tlaku, ale i ohybu a také zohledňují vlnitost intermediálních filament. Modely umožňují, že jednotlivé komponenty cytoskeletu mohou změnit svůj tvar a uspořádání bez zhroucení celé buněčné struktury, dokonce i když jsou odstraněny, a umožňují nám tak vyhodnotit mechanický přínos jednotlivých cytoskeletálních složek k buněčné mechanice. Navržené modely jsou validovány porovnáním jejich křivek síla-posunutí s experimentálními výsledky. Model plovoucí buňky realisticky popisuje silově-deformační odezvu buňky při tahu a tlaku a obě reakce ilustrují nelineární zvýšení tuhosti s mechanickým zatížením. Je simulována také tlaková zkouška ploché endoteliální buňky a porovnána s testem přilnuté buňky a jeho simulací. Poté se simuluje smykový test ploché buňky, aby se vyhodnotilo její chování při smykovém zatížení vyskytujícím se v cévní stěně v důsledku proudění krve. Poté byla zkoumána mechanická odezva ploché buňky ve vrstvě endotelu za fyziologických podmínek v arteriální stěně. Později byla zkoumána buněčná odezva při odtrhování od položky během cyklických úseků pomocí 3D simulací metodou konečných prvků. Navrhované modely poskytují cenné poznatky o vzájemných souvislostech mechanických vlastností buněk, o mechanické roli jednotlivých cytoskeletálních složek i jejich synergii a o deformaci jádra za různých podmínek mechanického zatížení. Proto by práce měla přispět k lepšímu pochopení cytoskeletální mechaniky, zodpovědné za chování buněk, což může zase pomoci při zkoumání různých patologických stavů souvisejících s buněčnou mechanikou, jako je rakovina a vaskulární onemocnění.
Atherogenesis is the leading cause of death in the developed world, and is putting considerable monetary pressure on health systems the world over. The prevailing haemodynamic environment together with the local concentration of mechanical load play an important role in the focal nature of atherosclerosis to very specific regions of the human vasculature. In blood vessels, the endothelium, a thin monolayer of cells, lies at the interface between the bloodstream and the vascular wall. Dysfunction of endothelial cells is involved in major pathologies. For instance, atherosclerosis develops when the barrier and anti-inflammatory functions of the endothelium are impaired, allowing accumulation of cholesterol and other materials in the arterial wall. In cancer, a key step in the growth of a tumour is its vascularization, a process driven by endothelial cell migration. The mechanical environment of endothelial cells plays a key role in their function and dysfunction. Computational modelling can enhance the understanding of cell mechanics, which may contribute to establishing structure-function relationships of different cell types in different states. To achieve this, finite element (FE) models of endothelium cell are proposed in this thesis, i.e. a suspended cell model and adherent model elucidating the cell’s response to global mechanical loads, such as tension and compression, as well as a model of the cell with its natural shape inside the endothelial layer. They keep the central principles of tensegrity such as prestress and interplay between components, but the elements are free to rearrange independently of each other. Implementing the recently proposed bendo-tensegrity concept, these models consider flexural (buckling) as well as tensional/compressional behaviour of microtubules (MTs) and also incorporate the waviness of intermediate filaments (IFs). The models assume that the individual cytoskeletal components can change their form and organization without collapsing the entire cell structure when they are removed and thus, they enable us to evaluate the mechanical contribution of individual cytoskeletal components to the cell mechanics. The proposed models are validated with experimental results by comparison of their force-displacement curves. The suspended cell model mimics realistically the force-deformation responses during cell stretching and compression, and both responses illustrate a non-linear increase in stiffness with mechanical loads. The compression test of flat endothelial cell is simulated and compared with adherent cell test and its simulation. Then, the shear test of flat cell is simulated to assess its shear behaviour occurring in vascular wall due to blood flow. Then investigated the mechanical response of the flat cell within the endothelium layer under physiological conditions in arterial wall. Later, investigated the cell response in debonding during cyclic stretches using 3-D finite element simulations. The proposed models provide valuable insights into the interdependence of cellular mechanical properties, the mechanical role of cytoskeletal components in endothelial cells individually and synergistically, and the nucleus deformation under different mechanical loading conditions. Therefore, the thesis should contribute to the better understanding of the cytoskeletal mechanics, responsible for endothelial cell behaviour, which in turn may aid in investigation of various pathological conditions related to
Description
Citation
JAKKA, V. Computational Simulation of Mechanical Behaviour of Endothelial Cells [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2022.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Inženýrská mechanika
Comittee
prof. Ing. Jindřich Petruška, CSc. (předseda) MUDr. Jaromír Gumulec, Ph.D. (člen) Ing. Zdeněk Majer, Ph.D. (člen) prof. Ing. Ivo Provazník, Ph.D. (člen) Ing. Petr Marcián, Ph.D. (člen) Ing. Petra Kochová, Ph.D. (člen)
Date of acceptance
2022-05-30
Defence
Komise v souladu s oponenty konstatovala, že předložená práce představuje pokrok v oblasti modelování mechanického chování buněk a je základem pro další rozvoj této vědní oblasti.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO