• čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • English 
    • čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • Login
View Item 
  •   Repository Home
  • Publikační činnost pracovníků VUT v Brně
  • Fakulta elektrotechniky a komunikačních technologií
  • Ústav biomedicínského inženýrství
  • View Item
  •   Repository Home
  • Publikační činnost pracovníků VUT v Brně
  • Fakulta elektrotechniky a komunikačních technologií
  • Ústav biomedicínského inženýrství
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Stranded and Non-stranded RNA-Seq in Predicting Small RNAs in a Non-model Bacterium

Thumbnail
View/Open
9783031078026_4_accepted.pdf (858.2Kb)
Date
2022-06-08
Author
Sedlář, Karel
Zimmer, Ralf
Altmetrics
10.1007/978-3-031-07802-6_4
Metadata
Show full item record
Abstract
Thanks to their diversity, non-model bacteria represent an inexhaustible resource for microbial biotechnology. Their utilization is only limited by our lack of knowledge regarding the regulation of processes they are capable to perform. The problem lies in non-coding regulators, for example small RNAs, that are not so widely studied as coding genes. One possibility to overcome this hurdle is to use standard RNA-Seq data, gathered primarily to study gene expression, for the prediction of non-coding elements. Although computational tools to perform this task already exist, they require the utilization of stranded RNA-Seq data that must not be available for non-model organisms. Here, we showed that trans-encoded small RNAs can be predicted from non-stranded data with comparable sensitivity to stranded data. We used two RNA-Seq datasets of non-type strain Clostridium beijerinckii NRRL B-598, which is a promising hydrogen and butanol producer, and obtained comparable results for stranded and non-stranded datasets. Nevertheless, the non-stranded approach suffered from lower precision. Thus, the results must be interpreted with caution. In general, more benchmarking for tools performing direct prediction of small RNAs from standard RNA-Seq data is needed so these techniques could be adopted for automatic detection.
Keywords
Small non-coding RNA, Clostridium beijerinckii NRRL B-598, RNA-Seq, Genome annotation
Persistent identifier
http://hdl.handle.net/11012/208152
Document type
Peer reviewed
Document version
Postprint
Fulltext will be available on 09. 06. 2023
Source
Lecture Notes in Computer Science. 2022, vol. 13347, issue II., p. 45-56.
https://link.springer.com/chapter/10.1007/978-3-031-07802-6_4
DOI
10.1007/978-3-031-07802-6_4
Collections
  • Ústav biomedicínského inženýrství [127]
Citace PRO

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV
 

 

Browse

All of repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV