dc.contributor.author Diblík, Josef cs dc.date.accessioned 2022-07-27T14:53:12Z dc.date.available 2022-07-27T14:53:12Z dc.date.issued 2022-07-19 cs dc.identifier.citation Advances in Nonlinear Analysis. 2022, vol. 11, issue 1, p. 1614-1630. en dc.identifier.issn 2191-950X cs dc.identifier.other 178596 cs dc.identifier.uri http://hdl.handle.net/11012/208201 dc.description.abstract The article is concerned with systems of fractional discrete equations Delta(alpha)x(n + 1) = F-n(n, x(n), x(n - 1), ..., x(n(0))), n = n(0), n(0) + 1, ..., where n(0) is an element of Z , n is an independent variable, Delta(alpha) is an alpha-order fractional difference, alpha is an element of R, F-n : {n} x Rn-n0+1 -> R-s, S >= 1 is a fixed integer, and x : {n(0), n(0) + 1, ...} -> R-s is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n >= n(0), which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Delta(alpha)x(n + 1) = A(n)x(n) + delta(n), n = n(0), n(0) + 1, ..., where A(n) is a square matrix and delta(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well. en dc.format text cs dc.format.extent 1614-1630 cs dc.format.mimetype application/pdf cs dc.language.iso en cs dc.publisher De Gruyter cs dc.relation.ispartof Advances in Nonlinear Analysis cs dc.relation.uri https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html cs dc.rights Creative Commons Attribution 4.0 International cs dc.rights.uri http://creativecommons.org/licenses/by/4.0/ cs dc.subject Fractional discrete difference en dc.subject asymptotic behavior en dc.subject system of fractional discrete equations en dc.subject estimates of solutions en dc.title Bounded solutions to systems of fractional discrete equations en thesis.grantor Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotika cs sync.item.dbid VAV-178596 en sync.item.dbtype VAV en sync.item.insts 2022.08.21 00:54:34 en sync.item.modts 2022.08.21 00:15:08 en dc.coverage.issue 1 cs dc.coverage.volume 11 cs dc.identifier.doi 10.1515/anona-2022-0260 cs dc.rights.access openAccess cs dc.rights.sherpa http://www.sherpa.ac.uk/romeo/issn/2191-950X/ cs dc.type.driver article en dc.type.status Peer-reviewed en dc.type.version publishedVersion en
﻿

### This item appears in the following Collection(s)

Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International