Show simple item record

dc.contributor.authorMoravčík, Igorcs
dc.contributor.authorZelený, Martincs
dc.contributor.authorDlouhý, Antoníncs
dc.contributor.authorHadraba, Hynekcs
dc.contributor.authorMoravčíková de Almeida Gouvea, Larissacs
dc.contributor.authorPapež, Pavelcs
dc.contributor.authorFikar, Ondřejcs
dc.contributor.authorDlouhý, Ivocs
dc.contributor.authorRaabe, Dierkcs
dc.contributor.authorLi, Zhimingcs
dc.date.accessioned2022-10-12T06:54:15Z
dc.date.available2022-10-12T06:54:15Z
dc.date.issued2022-08-30cs
dc.identifier.citationSCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS. 2022, vol. 23, issue 1, p. 376-392.en
dc.identifier.issn1468-6996cs
dc.identifier.other179129cs
dc.identifier.urihttp://hdl.handle.net/11012/208474
dc.description.abstractWe investigated the effects of interstitial N and C on the stacking fault energy (SFE) of an equiatomic CoCrNi medium entropy alloy. Results of computer modeling were compared to tensile deformation and electron microscopy data. Both N and C in solid solution increase the SFE of the face-centered cubic (FCC) alloy matrix at room temperature, with the former having a more significant effect by 240% for 0.5 at % N. Total energy calculations based on density functional theory (DFT) as well as thermodynamic modeling of the Gibbs free energy with the CALPHAD (CALculation of PHAse Diagrams) method reveal a stabilizing effect of N and C interstitials on the FCC lattice with respect to the hexagonal close-packed (HCP) CoCrNi-X (X: N, C) lattice. Scanning transmission electron microscopy (STEM) measurements of the width of dissociated 1/2 dislocations suggest that the SFE of CoCrNi increases from 22 to 42-44 mJ center dot m(-2) after doping the alloy with 0.5 at. % interstitial N. The higher SFE reduces the nucleation rates of twins, leading to an increase in the critical stress required to trigger deformation twinning, an effect which can be used to design load-dependent strain hardening response.en
dc.formattextcs
dc.format.extent376-392cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherTaylor & Franciscs
dc.relation.ispartofSCIENCE AND TECHNOLOGY OF ADVANCED MATERIALScs
dc.relation.urihttps://www.tandfonline.com/doi/full/10.1080/14686996.2022.2080512cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectab initio calculationsen
dc.subjectinterstitialsen
dc.subjectmedium entropy alloyen
dc.subjectscanning transmission electron microscopyen
dc.subjectstacking fault energyen
dc.subjectstrengtheningen
dc.titleImpact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experimentsen
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs
sync.item.dbidVAV-179129en
sync.item.dbtypeVAVen
sync.item.insts2022.10.12 08:54:15en
sync.item.modts2022.10.12 08:15:35en
dc.coverage.issue1cs
dc.coverage.volume23cs
dc.identifier.doi10.1080/14686996.2022.2080512cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1468-6996/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International