Show simple item record

dc.contributor.authorNishimura, Hirokazu
dc.date.accessioned2013-11-26T11:06:19Z
dc.date.available2013-11-26T11:06:19Z
dc.date.issued2013cs
dc.identifier.citationMathematics for Applications. 2013, 2, č. 1, s. 43-60. ISSN 1805-3629.cs
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/23996
dc.description.abstractWe refurbish our axiomatics of di erential geometry introduced in [5]. Then the notion of Euclideaness can naturally be formulated. The principal ob- jective of this paper is to present an adaptation of our theory of di erential forms developed in [3] to our present axiomatic framework.en
dc.formattextcs
dc.format.extent43-60cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/2_1/nishimura1_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.titleAxiomatic differential geometry II-2 - differential formscs
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
dc.coverage.issue1cs
dc.coverage.volume2cs
dc.identifier.doi10.13164/ma.2013.05en
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record