Show simple item record

dc.contributor.authorMudroch, Martin
dc.contributor.authorZvanovec, Stanislav
dc.date.accessioned2014-12-09T12:12:34Z
dc.date.available2014-12-09T12:12:34Z
dc.date.issued2014-04cs
dc.identifier.citationRadioengineering. 2014, vol. 23, č. 1, s. 474-479. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/36442
dc.description.abstractThis paper describes FSO link performance prediction based on available meteorological data using different Artificial Neural Network (ANN) approaches. Several types of ANNs were compared and their performance were evaluated. The paper introduces an ANN application utilizing real delayed data. This approach has been validated to be more precise than common feed-forward neural networks.en
dc.formattextcs
dc.format.extent474-479cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2014/14_01_0474_0479.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectArtifficial neural networksen
dc.subjectfree-space opticsen
dc.subjectweather influenceen
dc.titleArtificial Neural Network Utilization for FSO Link Performance Estimationen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue1cs
dc.coverage.volume23cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported License