Show simple item record

dc.contributor.authorKekrt, Daniel
dc.contributor.authorLukes, Tomas
dc.contributor.authorKlima, Milos
dc.contributor.authorFliegel, Karel
dc.date.accessioned2014-12-09T13:31:26Z
dc.date.available2014-12-09T13:31:26Z
dc.date.issued2014-06cs
dc.identifier.citationRadioengineering. 2014, vol. 23, č. 2, s. 618-631. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/36460
dc.description.abstractThe paper provides a theoretical framework for the two-dimensional iterative maximum a posteriori detection. This generalization is based on the concept of detection algorithms BCJR and SOVA, i.e., the classical (one-dimensional) iterative detectors used in telecommunication applications. We generalize the one-dimensional detection problem considering the spatial ISI kernel as a two-dimensional finite state machine (2D FSM) representing a network of the spatially concatenated elements. The cellular structure topology defines the design of the 2D Iterative decoding network, where each cell is a general combination-marginalization statistical element (SISO module) exchanging discrete probability density functions (information metrics) with neighboring cells. In this paper, we statistically analyse the performance of various topologies with respect to their application in the field of image restoration. The iterative detection algorithm was applied on the task of binarization of images taken from a CCD camera. The reconstruction includes suppression of the defocus caused by the lens, CCD sensor noise suppression and interpolation (demosaicing). The simulations prove that the algorithm provides satisfactory results even in the case of an input image that is under-sampled due to the Bayer mask.en
dc.formattextcs
dc.format.extent618-631cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2014/14_02_0618_0631.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectIterative detectionen
dc.subject2D iterative decoding netwoksen
dc.subjectmaximum a posteriori probability criterionen
dc.subjectdefocus suppressionen
dc.subjectdeconvolutionen
dc.subjectdenoisingen
dc.subjectde-mosaicingen
dc.subjectbinary image restorationen
dc.subjectimage processing.en
dc.title2D Iterative MAP Detection: Principles and Applications in Image Restorationen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue2cs
dc.coverage.volume23cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported License