3D Metamaterial Based on a Regular Array of Resonant Dielectric Inclusions

Loading...
Thumbnail Image
Date
2009-06
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Abstract
The 3D regular lattice of bi-spherical dielectric resonant inclusions arranged in a cubic lattice as two sets of spheres made from the same dielectric material having different radii and embedded in a host dielectric material with lower dielectric permittivity was carefully investigated. The magnetic resonance corresponding to the first Mie resonance in the spherical particles is followed by forming a regular array of effective magnetic dipoles, and the structure of the identical spherical dielectric resonators can be designed as an isotropic μ-negative 3D-metamaterial. For the electric resonance it was found experimentally and by the simulation that the resonant response of the electric dipole was weakly pronounced and the μ-negative behavior was remarkably suppressed. To enhance the electric dipole contribution we considered another kind of the symmetry of the bi-spherical arrangement of the particles corresponding to the body-centered cubic symmetry instead of the symmetry of NaCl analog considered previously. Electromagnetic properties of a volumetric structure based on a regular lattice of identical cubic dielectric particles is also considered and analyzed as μ-negative metamaterial. The cubic particle based 3D-metamaterial is preferable for practical realization as compared with the spherical inclusions.
Description
Citation
Radioengineering. 2009, vol. 18, č. 2, s. 111-116. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2009/09_02_111_116.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 3.0 Unported License
http://creativecommons.org/licenses/by/3.0/
DOI
Collections
Citace PRO