Show simple item record

dc.contributor.authorBandzi, Peter
dc.contributor.authorOravec, Milos
dc.contributor.authorPavlovicova, Jarmila
dc.date.accessioned2016-03-24T06:43:45Z
dc.date.available2016-03-24T06:43:45Z
dc.date.issued2007-09cs
dc.identifier.citationRadioengineering. 2007, vol. 16, č. 3, s. 133-137. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/57314
dc.description.abstractThe paper introduces a new method of texture segmentation efficiency evaluation. One of the well known texture segmentation methods is based on Gabor filters because of their orientation and spatial frequency character. Several statistics are used to extract more information from results obtained by Gabor filtering. Big amount of input parameters causes a wide set of results which need to be evaluated. The evaluation method is based on the normal distributions Gaussian curves intersection assessment and provides a new point of view to the segmentation method selection.en
dc.formattextcs
dc.format.extent133-137cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2007/07_03_133_137.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectTexture segmentationen
dc.subjectimage segmentationen
dc.subjectGabor filtersen
dc.subjectefficiency evaluationen
dc.titleNew Statistics for Texture Classification Based on Gabor Filtersen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue3cs
dc.coverage.volume16cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported License