Show simple item record

dc.contributor.authorVidiscakova, J.
dc.contributor.authorPucik, J.
dc.date.accessioned2016-05-05T12:01:55Z
dc.date.available2016-05-05T12:01:55Z
dc.date.issued1997-09cs
dc.identifier.citationRadioengineering. 1997, vol. 6, č. 3, s. 10-13. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/58367
dc.description.abstractSpectrum estimation belongs to the most frequent problems solved by the digital stochastic signal processing. The application of the unconventional method of spectrum estimation based on maximum entropy approach introduced by J. P. Burg is presented. Drawbacks of classical spectrum estimation methods involving interpretation difficulties are avoided. Basic principles and underlying conceptions yielding the same results as autoregressive modelling and reasonableness of its application are discussed. Stochastic biosignal reflecting fetus movements obtained by the tocography is analyzed by the maximum entropy method and compared to the conventional method of Fourier analysis.en
dc.formattextcs
dc.format.extent10-13cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/1997/97_03_03.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjecttocographyen
dc.subjectentropyen
dc.subjectspectrum estimationen
dc.subjectautoregressionen
dc.subjectprediction error filteren
dc.titleUnconventional Tocographic Signal Analysisen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue3cs
dc.coverage.volume6cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported License