Zařízení pro zahušťování odpadní vody z bioplynových stanic

Abstract
Cílem dizertační práce je vývoj technologie, která má přispět k řešení dvou zásadních problémů spojených s provozem bioplynových stanic (BPS). Konkrétně se jedná o nedostatečné využívání odpadního tepla ze spalování bioplynu a nákladné zpracování a využivání fermentačních zbytků, které vznikají ve velkých objemech a jsou svázány řadou legislativních omezení. Na základě rešerše dostupných separačních metod byla jako vhodná technologie zvolena vakuová odparka, mezi jejíž výhody patří jednoduchá konstrukce klíčových zařízení, provozní spolehlivost a robustnost, nízké nároky na předúpravu zahušťovaného média, potenciál k rychlému komerčnímu uplatnění a zejména pak schopnost využít nízkopotenciální odpadní teplo. Primárním účelem této technologické jednotky je redukce objemu fermentačních zbytků. Dalším přínosem jejího provozu je efektivní využívání odpadního tepla z BPS, které by jinak zústalo nevyužito. Jako vhodné pro uplatnění v BPS byly identifikovány odparky s nízkou spotřebou elektrické energie, která je hlavním produktem BPS. Tři z těchto technologií byly předmětem důkladnějšího rozboru zahrnujícího tvorbu výpočtových modelů a jejich vyčíslení pro podmínky vzorové BPS. Jako energeticky nejméně efektivní byla zhodnocena jednostupňová odparka s nucenou cirkulací (680 – 712 kWhth/m3, 25,9 – 30,5 kWhel/m3). Výrazně nižší energetické náročnosti dosáhly třístupňová filmová odparka (241 – 319 kWhth/m3, 12,0 – 23,6 kWhel/m3) a devítistupňová mžiková odparka (236 – 268 kWhth/m3, 13,6 – 18,4 kWhel/m3). Pro vývojovou činnost, která je jádrem disertační práce, byla zvolena vícestupňová mžikové odparka (MSF – multi-stage flash). Mezi hlavní důvody této volby patřily nízké požadavky na teplosměnnou plochu, dobré provozní zkušenosti v oblasti odsolování, jednoduchá konstrukce, modularita a odpařování mimo teplosměnnou plochu. Provedeno bylo také důkladné technicko-ekonomické zhodnocení integrace této odparky do BPS. Hlavní náplní práce byl experimentální vývoj prototypu MSF odparky. Hlavním cílem vývojové činnosti bylo dosažení ustáleného průtoku zahušťované kapalné frakce digestátu, tzv. fugátu a kontinuální tvorby destilátu. Tento cíl nebylo snadné naplnit především kvůli vlastnostem fugátu, který má nenewtonský charakter a zvýšenou hustotu i viskozitu v porovnání s vodou. Předmětem analýzy byla rovněž pěnivost fugátu. V textu je popsán vývoj odparky i první úspěšný provozní test, při němž bylo nutné použít protipěnicího přípravku. S plně vyvinutým prototypem MSF odparky bylo dosaženo kontinuálního provozu s produkcí destilátu v množství od 5 do 10 kg/h při průtoku fugátu 0,4 až 0,5 m3/h. Hlavním nedostatkem vybrané technologie je znečištění destilátu amoniakálním dusíkem. Proto byly analyzovány základní postupy jeho dodatečné eliminace.
This dissertation thesis deals with the development of technology which could tackle two major issues related to biogas plants. These issues concern the insufficient use of waste heat from biogas combustion and its subsequent processing. It also concerns the use of the fermentation residues which are formed in large quantities and whose use is restricted by law. Based on a literary search of separation methods, a vacuum evaporator was selected as the most suitable technology. Its advantages include its simple construction, operational reliability and robustness, low costs of thickening medium pre-treatment, potential for a quick commercial application and, especially, the chance to use a low-potential waste heat. A primary purpose of this technological unit is the reduction in the volume of fermentation residues. Other benefits include the efficient use of waste heat from a biogas plant, which would otherwise be wasted. Evaporators with a low consumption of electrical energy (which is a main product of a biogas plant) seem to be the best option for applications in the biogas plants. Three of these technologies were subjected to a more thorough analysis, which included the development of computational models and their quantification for conditions in a sample biogas plant. A one-stage evaporator with a forced circulation (680 – 712 kWhth/m3, 25.9 – 30.5 kWhel/m3) was evaluated as the least suitable option in terms of energy demands. The energy intensity of a three-stage evaporator with a falling film (241 – 319 kWhth/m3, 12.0 – 23.6 kWhel/m3) and a nine-stage flash evaporator (236 – 268 kWhth/m3, 13.6 – 18.4 kWhel/m3) is significantly lower. A multi-stage flash evaporator (MSF) was then chosen for development and will form the central focus of this thesis. The reasons for the choice are as follows: the low requirements on the heat transfer surface, good operational experience in the field of desalination, its simple construction, modularity and evaporation outside the heat transfer surface. A thorough technical-economic evaluation was also performed on the integration of the evaporator into the biogas plant. The main part of the work included the experimental development of a MSF evaporator prototype. The main objective of this development was to achieve a stable flow rate of the thickening liquid digestate fraction and the continuous formation of the distillate. This was not an easy objective to achieve, especially due to the properties of the liquid digestate, which has a non-newtonian characteristic and increased density and viscosity compared to water. The tendency of the liquid digestate to form foam was also the subject of analysis. The development of the evaporator and first successful operational test are described in the thesis in detail. This required the use of an anti-foaming product. A fully-developed prototype of the MSF evaporator allowed us to achieve continuous operation with a distillate production, reaching from 5 to 10 kg/h at a liquid digestate flow rate of 0.4–0.5 m3/h. The main drawback of this technology is the pollution of the distillate with ammonia nitrogen, and it is for this reason that the basic procedures of its subsequent elimination was selected for further analysis.
Description
Citation
VONDRA, M. Zařízení pro zahušťování odpadní vody z bioplynových stanic [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2017.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Konstrukční a procesní inženýrství
Comittee
doc. Ing. Zdeněk Skála, CSc. (předseda) doc. Ing. Ladislav Bébar, CSc. (člen) doc. Ing. Pavel Hoffman, CSc. (člen) Ing. Miloslav Odstrčil, CSc. (člen) RNDr. Petr Žaloudík, CSc. (člen) doc. Ing. Zdeněk Jegla, Ph.D. (člen) doc. Ing. Jiří Hájek, Ph.D. (člen)
Date of acceptance
2017-05-24
Defence
viz. spis
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO