Pokročilé metody pro inverzní úlohy vedení tepla

Abstract
Numerické simulace tepelných procesů jsou založeny na znalosti geometrie, materiálových vlastností, počátečních a okrajových podmínek. Masivnímu používání těchto simulací v hutním průmyslu (například pro simulaci tepelného zpracování oceli) brání neznámost přesných okrajových podmínek, které na rozdíl od ostatních vstupních parametrů obvykle není snadné určit. Protože pro většinu netriviálních procesů neexistují dostatečně přesné empirické vztahy, je nutné okrajové podmínky získávat experimentální cestou. Okrajové podmínky nejde měřit přímo. Proto jsou místo nich zaznamenávány podpovrchové teploty, které jsou pomocí inverzní úlohy vedení tepla přepočítány na hledané okrajové podmínky. Tato dizertační práce se zaměřuje na dva typy inverzních úloh, které jsou stávajícími metodami špatně řešitelné. Prvním typem jsou úlohy, ve kterých dochází k prudkým (téměř skokovým) nárůstům/poklesům hodnoty okrajové podmínky. Pro tento typ úloh jsou v práci navrženy a srovnávány dva nové přístupy. Druhým typem úlohy je nestacionárně nehomogenní chlazení. Pro tento případ jsou vyvinuty tři nové metody, které jsou aplikovány na případ vodního chlazení svislého povrchu hliníkového vzorku. Základní vlastností popisovaného případu je nehomogenita chlazení. Část povrchu je intenzivně chlazena stékající vodou na rozdíl od druhé části povrchu, který je chlazen jen s malou intenzitou, protože je od přímého kontaktu s vodou chráněn parní vrstvou (Leidenfrostův efekt). Rozložení těchto dvou částí je navíc nestacionární (v průběhu experimentu se mění). Nově vyvinuté metody jsou vzájemně porovnávány.
Numerical simulations of thermal processes are based on known geometry, material properties, initial and boundaries conditions. The massive use of these simulations in the metallurgical industry (for example for simulation of heat treatment of steel) is limited by the knowledge of precise boundary conditions, which are not easy to determine in compare to other input parameters. Empirical formulas are not sufficiently accurate for most non-trivial processes. Therefore, it is necessary to obtain the boundary conditions by experimental way. Boundary conditions can not be measured directly. The boundary conditions are determined by solving inverse heat conduction problem based on the measured temperature records. This doctoral thesis focuses on two types of the inverse heat conduction problems, which are poorly solved by existing methods. The first type are tasks that contains sharp increase/decrease in the values of the boundary conditions. Two new approaches are proposed and compared in this thesis for this type of tasks. The second type are tasks with non-stationary and non-homogeneous cooling. Three new methods were developed for this case. They are applied for the case of water cooling of vertical aluminum sample. The base characteristics of the current task is inhomogeneous cooling. One part of the surface is cooled intensively by flowing water in contrast to the other part of surface which is cooled only with low intensity since it is protected from direct contact with water by the vapor layer (Leidenfrost effect). The positions of these two part of surface are not stationary (they change during the experiment). The newly developed methods are compared to each other.
Description
Citation
KOMÍNEK, J. Pokročilé metody pro inverzní úlohy vedení tepla [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2018.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Inženýrská mechanika
Comittee
prof. Ing. Josef Štětina, Ph.D. (předseda) prof. Ing. Mária Čarnogurská, CSc. (člen) Ing. Daniel Hajduk, CSc. (člen) prof. RNDr. Miroslav Doupovec, CSc., dr. h. c. (člen) prof. Ing. Mirko Dohnal, DrSc. (člen)
Date of acceptance
2018-05-14
Defence
DDP má významný přínos spojením numerických metod a jejich praktických aplikací. Pro dosažení výsledků bylo provést rozsáhlé experimentální práce.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO