Zkoumání konektivity mozkových sítí pomocí hemodynamického modelování

Loading...
Thumbnail Image
Date
ORCID
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstract
Zobrazení funkční magnetickou rezonancí (fMRI) využívající "blood-oxygen-level-dependent" efekt jako indikátor lokální aktivity je velmi užitečnou technikou k identifikaci oblastí mozku, které jsou aktivní během percepce, kognice, akce, ale také během klidového stavu. V poslední době také roste zájem o studium konektivity mezi těmito oblastmi, zejména v klidovém stavu. Tato práce předkládá nový a originální přístup k problému nepřímého vztahu mezi měřenou hemodynamickou odezvou a její příčinou, tj. neuronálním signálem. Zmíněný nepřímý vztah komplikuje odhad efektivní konektivity (kauzálního ovlivnění) mezi různými oblastmi mozku z dat fMRI. Novost prezentovaného přístupu spočívá v použití (zobecněné nelineární) techniky slepé dekonvoluce, což dovoluje odhad endogenních neuronálních signálů (tj. vstupů systému) z naměřených hemodynamických odezev (tj. výstupů systému). To znamená, že metoda umožňuje "data-driven" hodnocení efektivní konektivity na neuronální úrovni i v případě, že jsou měřeny pouze zašumělé hemodynamické odezvy. Řešení tohoto obtížného dekonvolučního (inverzního) problému je dosaženo za použití techniky nelineárního rekurzivního Bayesovského odhadu, který poskytuje společný odhad neznámých stavů a parametrů modelu. Práce je rozdělena do tří hlavních částí. První část navrhuje metodu k řešení výše uvedeného problému. Metoda využívá odmocninové formy nelineárního kubaturního Kalmanova filtru a kubaturního Rauch-Tung-Striebelova vyhlazovače, ovšem rozšířených pro účely řešení tzv. problému společného odhadu, který je definován jako simultánní odhad stavů a parametrů sekvenčním přístupem. Metoda je navržena především pro spojitě-diskrétní systémy a dosahuje přesného a stabilního řešení diskretizace modelu kombinací nelineárního (kubaturního) filtru s metodou lokální linearizace. Tato inverzní metoda je navíc doplněna adaptivním odhadem statistiky šumu měření a šumů procesu (tj. šumů neznámých stavů a parametrů). První část práce je zaměřena na inverzi modelu pouze jednoho časového průběhu; tj. na odhad neuronální aktivity z fMRI signálu. Druhá část generalizuje navrhovaný přístup a aplikuje jej na více časových průběhů za účelem umožnění odhadu parametrů propojení neuronálního modelu interakce; tj. odhadu efektivní konektivity. Tato metoda představuje inovační stochastické pojetí dynamického kauzálního modelování, což ji činí odlišnou od dříve představených přístupů. Druhá část se rovněž zabývá metodami Bayesovského výběru modelu a navrhuje techniku pro detekci irelevantních parametrů propojení za účelem dosažení zlepšeného odhadu parametrů. Konečně třetí část se věnuje ověření navrhovaného přístupu s využitím jak simulovaných tak empirických fMRI dat, a je významných důkazem o velmi uspokojivých výsledcích navrhovaného přístupu.
Functional magnetic resonance imaging (fMRI) utilizing the blood-oxygen-level-dependent (BOLD) effect as an indicator of local activity is a very useful technique to identify brain regions that are active during perception, cognition, action, and also during rest. Currently, there is a growing interest to study connectivity between different brain regions, particularly in the resting-state. This thesis introduces a new and original approach to problem of indirect relationship between observed hemodynamic response and its cause represented by neuronal signal, as this indirect relationship complicates the estimation of effective connectivity (causal influence) between different brain regions from fMRI data. The novelty of this approach is in (generalized nonlinear) blind-deconvolution technique that allows estimation of the endogenous neuronal signals (system inputs) from measured hemodynamic responses (system outputs). Thus, it enables a fully data-driven evaluation of effective connectivity on neuronal level, even though only fMRI hemodynamic responses are observed. The solution to this difficult deconvolution (model inversion) problem is obtained through a nonlinear recursive Bayesian estimation framework for joint estimation of hidden model states and parameters. This thesis is divided into three main parts. The first part proposes a method to solve the above mentioned inversion problem. The method uses a square-root form of a nonlinear cubature Kalman filtering and cubature Rauch-Tung-Striebel smoothing extended to a joint estimation problem defined as a simultaneous estimation of states and parameters in a sequential manner. The method is designed particularly for continuous-discrete systems and obtains an accurate and stable solution to model discretization by combining nonlinear (cubature) filtering with local linearization. Moreover, the inversion method is equipped with the adaptive estimation of measurement, state, and parameter noise statistics. The first part of the thesis is focused only on the single time course model inversion; i.e. estimation of neuronal signal from fMRI signal. The second part generalizes the proposed approach and applies it to multiple fMRI time courses in order to enable the estimation of coupling parameters of a neuronal interaction model; i.e. estimation of effective connectivity. This method represents a novel stochastic treatment of dynamic causal modeling, which makes it distinct from any previously introduced approach. The second part also deals with methods for Bayesian model selection and proposes a technique for detection of irrelevant connectivity parameters to achieve improved performance of parameter estimation. Finally, the third part provides a validation of the proposed approach by using both simulated and empirical fMRI data, and demonstrates robust and very good performance.
Description
Citation
HAVLÍČEK, M. Zkoumání konektivity mozkových sítí pomocí hemodynamického modelování [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2012.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Biomedicínská elektronika a biokybernetika
Comittee
prof. Ing. Ivo Provazník, Ph.D. (předseda) Ing. Robert Vích, DrSc. (člen) Prof. MUDr. Milan Brázdil, Ph.D. (člen) Ing. Josef Halámek, CSc. (člen) Prof. Ing. Jan Flusser, DrSc. (člen) Prof. MUDr. Ing. Petr Hluštík, Ph.D. - oponent (člen) Ing. Václav Šmídl, Ph.D. - oponent (člen)
Date of acceptance
2012-01-25
Defence
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO