LOKÁLNÍ ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ

LOCAL TESTS OF MECHANICAL PROPERTIES OF MATERIALS

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE
Bc. JAROMÍR WASSERBAUER
AUTHOR

VEDOUCÍ PRÁCE
Ing. MARTIN ZMRZLÝ, Ph.D.
SUPERVISOR

BRNO 2009
Zadání diplomové práce

Ústav: Ústav chemie materiálů
Student(ka): Bc. Jaromír Wasserbauer
Studijní program: Chemie, technologie a vlastnosti materiálů (N2820)
Studijní obor: Chemie, technologie a vlastnosti materiálů (2808T016)
Vedoucí diplomové práce: Ing. Martin Zmrzlý, Ph.D.
Konzultanti diplomové práce:

Název diplomové práce:
Lokální zkoušky mechanických vlastností materiálů

Zadání diplomové práce:
Zhodnocení vztahů mezi výsledky indentačních zkoušek a zkoušek tahem nebo ohybem
Realizace indentačních měření mechanických vlastností homogenních materiálů
Realizace indentačních měření mechanických vlastností heterogenních materiálů

Termín odevzdání diplomové práce: 22.5.2009
Diplomová práce se odevzdává ve třech exemplářích na sekretariát ústavu a v elektronické formě vedoucímu diplomové práce. Toto zadání je přílohou diplomové práce.

Bc. Jaromír Wasserbauer
Ing. Martin Zmrzlý, Ph.D.
prof. RNDr. Josef Jančář, CSc.
Student(ka) Vedoucí práce Ředitel ústavu

V Brně, dne 1.10.2008
doc. Ing. Jaromír Havlica, DrSc.
Děkan fakulty
ABSTRAKT
Práce obsahuje 21 stran teoretického úvodu a 72 stran vlastních experimentálních výsledků.

KLÍČOVÁ SLOVA
tvrdost, mikrotvrdost, pevnost tahu, pevnost v tlaku, pevnost v ohybu, sklo, geopolymer

KEYWORDS
hardness, microhardness, tensile strength, compressive strength, bending strength, glass, geopolymer
PROHLÁŠENÍ
Prohlašuji, že jsem diplomovou práci vypracoval samostatně a že všechny použité literární zdroje jsem správně a úplně citoval. Diplomová práce je z hlediska obsahu majetkem Fakulty chemické VUT v Brně a může být využita ke komerčním účelům jen se souhlasem vedoucího práce a děkana FCH VUT.

………………………….
podpis studenta

OBSAH

1 ÚVOD...8

2 TEORETICKÁ ČÁST..9

2.1 Tvrdost..9
 2.1.1 Metody měření ...10
 2.1.1.1 Vniková tvrdost ...10
 2.1.1.2 Metody odrazové (dynamicko – elastické) ..11

2.2 Mikrotvrzdost ...11
 2.2.1 Podstata měření mikrotvrzosti ...11
 2.2.2 Měření mikrotvrzosti pomocí nanoindentoru ...12

2.3 Měření tvrzdosti ve výzkumu anorganických materiálů ...13
 2.3.1 Interfaciální zóny mikrostruktury betonu obsahujícího granulovanou vysokopecní strusku ..13
 2.3.2 Testování mikrotvrzosti cementových materiálů ..14
 2.3.3 Mechanické vlastnosti tenkých film–substrate systémů16

2.4 Lomová houževnatost a její význam pro indentacní zkoušky16
 2.4.1 Měření lomové houževnatosti pomocí mikrotrhlin ...16
 2.4.1.1 Metoda založená na měření délky trhlin na povrchu ...16
 2.4.1.2 Metoda založená na měření pevnosti vzorku se zárodečnou trhlinou17

2.5 Tahová zkouška...17
 2.5.1 Zařízení pro tahovou zkoušku ..18
 2.5.2 Vyhodnocení tahové zkoušky ..18

2.6 Ohybová zkouška...19
 2.6.1 Zařízení pro ohybovou zkoušku ...20
 2.6.2 Vyhodnocení ohybové zkoušky ..20

2.7 Zkouška v tlaku..21
 2.7.1 Vyhodnocení tlakové zkoušky ..21

2.8 Zkouška tvrzdosti podle Brinella ..22
 2.8.1 Zařízení pro měření tvrzdosti podle Brinella ..22
 2.8.2 Vyhodnocení zkoušky tvrzdosti podle Brinella ..23

2.9 Použité materiály ..23
 2.9.1 Sklo ..24
 2.9.2 Geopolymer ..24
 2.9.3 Bauxit ..26
 2.9.4 Popílek ...26

3 CÍLE PRÁCE ..28
4 EXPERIMENTÁLNÍ ČÁST .. 29

4.1 Užité přístroje .. 29
 4.1.1 Elektronový mikroskop .. 29
 4.1.2 Tyrdoměr podle Brinella ... 29
 4.1.3 Tyrdoměr podle Vickerse .. 30
 4.1.4 Mikrotvrdoměr ... 31
 4.1.5 Přístroj měřicí pevnost v tahu ... 31
 4.1.6 Michaelisův přístroj (měření pevnosti v ohybu) 32
 4.1.7 Lis pro měření pevnosti v tlaku .. 33
 4.1.8 Metalografická bruska ... 33
 4.1.9 Metalografický lis .. 34
 4.1.10 Vakuová naprašovačka .. 34
 4.1.11 Vibrační mlýn .. 35
 4.1.12 Sítová analýza .. 35
 4.1.13 Michačka .. 35
 4.1.14 Komorová elektrická pec .. 36
 4.1.15 Ultrazvuková zkouška modulu pružnosti .. 36

4.2 Připravené vzorky ... 36
 4.2.1 Sklo-tyče .. 36
 4.2.2 Sklo - koule ... 38
 4.2.3 Suroviny pro přípravu geopolymerních směsí ... 39
 4.2.3.1 Metakaolin .. 39
 4.2.3.2 Hydroxid sodný .. 39
 4.2.3.3 Voda .. 39
 4.2.3.4 Vodní skla .. 39
 4.2.3.5 SUK ... 40
 4.2.3.6 Bauxit .. 41
 4.2.3.7 Popílek .. 42
 4.2.4 Příprava vzorků geopolymerních směsí .. 43

5 VÝSLEDKY A DISKUSE ... 45

5.1 Sklo-tyče .. 45

5.2 Sklo-koule ... 50

5.3 Diskuse výsledků získaných na skleněných vzorcích 52

5.4 Vztahy mezi tvrdostí a pevností ... 55
 5.4.1 Lomová houževnatost, pevnost, tvrdost a modul pružnosti 55
 5.4.2 Lomová houževnatost .. 55

5.5 Geopolymer 0 % ... 57

5.6 Bauxit ... 61
5.7 Ověření jednoduchých vztahů ..62

5.8 Geopolymery s obsahem bauxitu 5 - 20 % ..66
 5.8.1 Charakterizace matrice, znů a jejich rozhraní ..66
 5.8.2 Mechanické vlastnosti trámců ...68
 5.8.3 Vliv obsahu bauxitu na mechanické vlastnosti materiálu ..70

5.9 Makroskopické zkoušky geopolymerů GP-10%FA-Na a GP-10%FA-K72

5.10 Mikrostrukturní výzkum geopolymerů GP-10%FA-Na a GP-10%FA-K73
 5.10.1 Geopolymer Na L ..73
 5.10.1.1 Koncentrační profil fázového rozhraní GP-10%FA-Na ..76
 5.10.1.2 Profil mikrotvrdosti fázového rozhraní GP-10%FA-Na ..77
 5.10.2 Geopolymer K L ..80
 5.10.2.1 Koncentrační profil fázového rozhraní GP-10%FA-K ...83
 5.10.2.2 Profil mikrotvrdosti fázového rozhraní GP-10%FA-K ...83

5.11 Korelace chemického složení a mechanických vlastností fázového rozhraní popílek - matrice86
 5.11.1 Mikrotvrdost v přechodových pásmech geopolymerů ...86

6 ZÁVĚR ...92

7 SEZNAM POUŽITÝCH ZDROJŮ ...94

8 SEZNAM POUŽITÝCH ZKRÁTEK A SYMBOLŮ ...96

9 PŘÍLOHA ..97
1 ÚVOD

Jednou z nejlépe měřitelných vlastností používaných materiálů je tvrdost. Rovnou můžeme uvést, že již od nejstarších způsobů měření (viz dále) právě ona umožňuje badateli zaměřit mechanické působení do oblasti vzorku, která je v jeho zájmu.

Měření tvrdosti je známá a používaná metoda již několik století. Je to také metoda, kterou lze praktikovat přímo v provozu a na výrobku, který je používán, protože nezpůsobí taková poškození, aby byl výrobek nepoužitelný. Mohou se stupnice tvrdosti, která je používaná dodnes, je stará více než dvě století.

Tvrdost je vlastnost, která ovlivňuje celkové chování materiálu a jeho samotné použití v praxi. Je tedy velmi důležité zabývat se jejím měřením, protože je mnoho neprozřejmého na poli mikrostruktury u složitějších materiálů, jako jsou kompozitní látky (moderní keramika, vysokohodnotný beton, geopolymery atd.). U těchto kompozitních látek je celkem zbytečné zjišťovat tvrdost pomocí běžných tvrdoměrů, protože jejich struktura se liší na úrovni desítek či stovek mikrometrů (rozměry otisku indentorů běžných tvrdoměrů zřídka klesnou pod jeden milimetr, častěji dosahují centimetrové škály). Zaměřujeme se tedy na měření tvrdosti pomocí mikrotvrdoměru, který umožňuje změřit tvrdost jednotlivých fáze v tak složité struktuře jako je například geopolymer.

Tvrdost je vlastnost materiálu, která úzce souvisí s ostatními mechanickými vlastnostmi a tudíž bychom měli být schopni určit vztahy mezi tvrdostí a ostatními mechanickými vlastnostmi. Touto problematikou se také zabývá tato diplomová práce. Největším problémem u heterogenních materiálů jako jsou např. geopolymery (které mají slibnou budoucnost) je kompaktnost a vznikající mezivrstvy mezi fázemi. Zvýšením kompaktnosti se výrazně pozitivně změní mechanické vlastnosti, jakými jsou pevnost, tvrdost, ale i křehkost. Dosažením vzájemné interakce fází při vzniku heterogenního materiálu lze dosáhnout velmi velkého množství přechodových pásem, které mají odlišné vlastnosti než původní látky z kterých vznikaly.

Poznáme-li, která složka, fáze, nebo rozhraní je slabým článkem a budeme schopni jeho vlastnosti s dostatečnou mírou přesnosti ovlivnit a zejména spolehlivě měřit, otevírá se cesta ke skutečnému tayloringu materiálu, tedy přípravě a výrobě materiálů s vlastnostmi přesně odpovídajícími požadavkům, které na ně budou v provozu kladeny.
2 TEORETICKÁ ČÁST

2.1 Tvrdost

Vztah mezi Mohsovou tvrdostí (HM) a Vickersovou tvrdostí (HV) má parabolický průběh (obr. 1) a je možné tento vztah definovat jako: \[HV = 86,3 - 90,9 \text{HM} + 34,6 \text{HM}^2. \]

\[\begin{array}{|c|c|c|}
\hline
\text{Číslo tvrdosti} & \text{Minerál} & \text{Chemický vzorec} \\
\hline
1 & mastek (talc) & \text{Mg}_3(\text{Si}_2\text{O}_5)(\text{OH})_2 \\
2 & sůl kamenná (gypsum) & \text{NaCl} \\
3 & vápenec (calcite) & \text{CaCO}_3 \\
4 & kazivec (fluorite) & \text{CaF}_2 \\
5 & apatit (apatite) & \text{Ca}_3(\text{PO}_4)(\text{OH}^-,\text{Cl}^-,\text{F}^-) \\
6 & živec (orthoclase) & \text{KAlSi}_3\text{O}_8 \\
7 & křemen (quartz) & \text{SiO}_2 \\
8 & topas (topaz) & \text{Al}_2\text{SiO}_4(\text{OH}^-,\text{F}^-)_2 \\
9 & korund (corund) & \text{Al}_2\text{O}_3 \\
10 & diamant (diamond) & \text{C} \\
\hline
\end{array} \]

Obrázek 1 – Vztah mezi Mohsovou tvrdostí a Vickersovou tvrdostí
2.1.1 Metody měření

Metody vrypové, při nichž se do povrchu látky rýpe jinou látkou a podle velikosti rysky v materiálu provedené některým z nerostů tvořících Mohsovu stupnici tvrdosti se určí tvrdost. Metody vnikové, při nichž se do povrchu látky vtlačuje určitou silou kulička, kužel, ježlan nebo jiné, přesně definované tělísko z tvrdého kovu nebo z diamantu. Metody odrazové, při nichž se mění hodnota odskoku určitého těliska spuštěného na povrch látky z určité výšky nebo vrženého proti povrchu definovanou rychlostí. [3]

2.1.1.1 Vniková tvrdost

Nejrozšířenější pro stanovení tvrdosti stavebních hmot jsou metody založené na odporu proti vnikání cizího tělesa do materiálu, např. Brinella (kuličková – HB), podle Vickerse (diamantový ježlan – HV), Rocwella (diamantový kužel – HRC), Shoreho (pružinový tvrdoměr s ocelovým hrotem – SH) aj. Výsledná hodnota tvrdosti je závislá na metodě zkoušení, a označuje se proto před číselnou hodnotou značkou metody (HB 174, HV 256, HRC 32, SH 67° apod.)

Uvažujeme metody, u kterých je vtisk geometricky podobný bez ohledu na zatížení. To jsou všechny metody užívající ježlanu (Vickers) nebo kužele (Rockwell). [4]

Bowden a Tabor [3] stanovili průměrný tlak plastické deformace při indentačním měření tvrdosti($P_{p.pl}$) vztahem

\[P_{p.pl} = \frac{\text{zatížení}}{\text{průmět vtisku}} \]

Tabulka 2 – Vztah mezi kluzu σ_K a průměrným tlakem plastické deformace $P_{p.pl}$ při měření Vickersovým tvrdoměrem

<table>
<thead>
<tr>
<th>Kov</th>
<th>σ_K [kg.mm$^{-2}$]</th>
<th>$P_{p.pl}$ [kg.mm$^{-2}$]</th>
<th>$P_{p.pl} / \sigma_K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>olovo s tellurem</td>
<td>2,1</td>
<td>6,7</td>
<td>3,2</td>
</tr>
<tr>
<td>hliník</td>
<td>12,3</td>
<td>39,5</td>
<td>3,2</td>
</tr>
<tr>
<td>měď</td>
<td>27</td>
<td>88</td>
<td>3,3</td>
</tr>
<tr>
<td>měkká ocel</td>
<td>70</td>
<td>227</td>
<td>3,2</td>
</tr>
</tbody>
</table>

V tabulce 2 je viditelné, že průměrný tlak $P_{p.pl} = c\sigma_K$, kde $c \approx 3$.

Ve velkém rozsahu pro mez kluzu ideálně plastického materiálu (σ_{Ki}) platí $P_{p.pl} = 3,2 \sigma_{Ki}$.

Vickersova tvrdost je však normována jako

\[HV = \frac{\text{zatížení}}{\text{plocha vtisku}} \]

Z geometrie ježlanu plyne při konstantním zatížení

\[HV = 0,9272 P_{p.pl} \]
\[HV = 0,9272 \times 3,2 \sigma_{Ki} = 3 \sigma_{Ki} \]
Protože pro ideální plastické materiály platí pro pevnost v tahu (maximální nominální tahové napětí)
\[\sigma_{Ki} = \sigma_{Pt} \]
(5)
dostáváme známý vztah, uváděný až dosud jako čistě empirický, a to
\[\sigma_{Pt} = 0,33 \text{ HV} \]
(6)

U Rockwellových tvrdostí měrný tlak nezáleží na použitém zatížení. Rozbor kvantitativního popisu byl podán a může být nalezen v [5].

2.1.1.2 Metody odrazové (dynamicko – elastické)

U těchto metod dopadá definované zkušební tělísko (většinou ve formě kuličky nebo diamantového hrotu) na zkoušený materiál z určité výšky a odráží se od jeho povrchu. Působením tělíška se zkoušený materiál v místě nárazu elasticky deformuje. Tato deformace spotřebuje část energie tělíška, které po odrazu nedosáhne výchozí pozice.

Tvrdoz jizíštěná tímto způsobem se využívá k posouzení stejnoměrnosti tuhnutí betonu a k ohraničení míst s rozdílnou kvalitou, případně při sledování vývoje pevnosti v závislosti na době tvrdnutí nebo na dalších podmínkách. [6]

2.2 Mikrotvrdost

Toto měření poskytuje informace o elastickém a plastickém chování materiálu v lokálním objemu. Mikrotvrdost je v principu odpor materiálu proti lokální plastické deformaci, která je vyvolána zatěžováním indentoru. Zatížení indentoru se u mikrotvrdosti pohybuje maximálně do 2 N.

Nejčastěji používaná je Vickersova metoda stanovení Vickersovy tvrdosti (HV). HV je definována jako poměr síly působení použitého závaží k ploše vytvořeného vtisku
\[\text{HV} = \frac{F}{S} = 1,854 \frac{F}{d^2} \]
(7)
Síla se udává v Newtonech a plocha v mm². Plocha se spočte podle tvaru indentoru, v případě Vickersova je to \(S = \frac{d^2}{1,8544} \), kde \(d \) je délka diagonály v mm. Zařízení, na kterých se hodnoty HV měří, se označuje jako mikrotvrdoměry. [7]

2.2.1 Podstata měření mikrotvrdosti

Klíčovou součástí všech přístrojů na měření mikrotvrdosti je indentor (obr. 2). Zpravidla je zhotoven z diamantu a dělí se podle tvaru:
1. Vickersova tetragonální pyramida má úhel mezi protilehlými plochami 136°. Vtisk pyramidy má diagonálu 7x delší než je hloubka vtisku.
2. Knoopova rombická pyramida má úhel protilehlých stran 130° a 172°30’.
Když zatlačujeme indentor, jsou nejprve plasticky deformovány jen povrchové nepravidelnosti (obr. 3A). Teprve později dochází k plastické deformaci povrchu v makroskopickém měřítku (obr. 3B,C). Obyčejně je mez kluzu výčnělků \(\sigma_{K,v} \) vyšší než materiálu \(\sigma_{K,z} \), který se nachází pod ním. Skutečná plocha vtisku bude určována tlakem \(P_{p,v} = c\sigma_{K,v} \), zdánlivá tlakem \(P_{p,z} = c\sigma_{K,z} \). Poměr skutečné plochy ku zdánlivé bude přibližně \(P_{p,z} : P_{p,v} = \sigma_{K,v} : \sigma_{K,z} \).

Obrázek 3 – Průběh deformací povrchu při zatlačování kuličky v průběhu měření tvrdosti. Při hodnocení profilu je třeba mít na zřeteli, že výška je zvětšena 10× více než délka. [3]

2.2.2 Měření mikrotvrdosti pomocí nanoindentoru

Nanoindentory umožňují provádět měření při velmi nízkých zatíženích (~ 10g). Tyto zkoušky nám poskytují flexibilní techniku k charakterizování mikrotvrdosti tenké vrstvy. Přístroj provádí podrobné měření hloubky proniknutí hrotu v průběhu jeho zatěžování i odlehčování. Z těchto hodnot lze vypočítat nejen hodnotu mikrotvrdosti, ale i podíl elastické (de) a plastické (dp) deformace během zatěžovacího cyklu, což vyjadřuje tzv. faktor elastické návratnosti \(R = de / dp \). Z naměřených hodnot se vypočítají hodnoty mikrotvrdosti. Hodnoty jsou vynášeny do grafů závislosti hloubky proniknutí hrotu h [µm] na velikosti zatížení L [g] (obr. 4). Přístroj je řízen počítačem, který zaznamenává a zpracovává naměřené hodnoty. Významným přínosem při měření nanoindentorem je možnost vypočtu modulu pružnosti tenké vrstvy. [7]
Obrázek 4 – Schematické znázornění závislosti hloubky proniknutí hrotu na velikosti zatížení; L_{max} je maximální zatížení hrotu, h_{max} je hloubka proniknutí hrotu při maximálním zatížení, h_{f} je hloubka proniknutí hrotu po odlehčení, S je sklon počátečního úseku odlehčovací křivky [7]

2.3 Měření tvrdosti ve výzkumu anorganických materiálů

2.3.1 Interfaciální zóny mikrostruktury betonu obsahujícího granulovanou vysokopecní strusku

J.M. Gao a kolektiv zkoumali přechodové pásmo (ITZ) mezi kamenivem a cementovou pastou a morfologii hydrátů v betonu obsahujícím granulovanou vysokopecní strusku (GGBS). Systém byl zkoumán pomocí XRD (X-ray diffraction), SEM (scanning electron microscope) a měřením mikrotvrdosti. Zkušební výsledky ukázaly, že GGBS významně snižuje kvantitu i uspořádání Ca(OH)$_2$ krystalů v ITZ. Velikost krystalů Ca(OH)$_2$ se stává menší díky přidání GGBS. Slabé ITZ mezi kamenivem a cementovou pastou bylo zesíleno následkem vulkanické reakce GGBS. Vliv se zesiluje snižením velikosti částeček GGBS. [9]

<table>
<thead>
<tr>
<th>Tabulka 3 – Použité materiály: Chemické složení (%) cementu, GGBS a FA [9]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>Cement</td>
</tr>
<tr>
<td>GGBS</td>
</tr>
<tr>
<td>FA</td>
</tr>
</tbody>
</table>
Obrázek 5 – Vztah hodnoty mikrotvrdosti pro pasty obsahující GGBS a FA [9]. Struska1 – GGBS měrný povrch 425 m²/kg, Struska2 – GGBS měrný povrch 600 m²/kg, FA – popílek. Graf A porovnává vliv náhrady cementu struskou1 a struskou2. Beton se struskou1 vykazuje nižší hodnoty mikrotvrdosti a větší vliv na ITZ než beton se struskou2. Graf B porovnává vliv náhrady cementu struskou1 a struskou2 s 20 % přídavkem popílku. Přídavek popílku vyrovná hodnoty mikrotvrdosti v ITZ.

Mezi výsledky dotýkající se předkládané diplomové práce získané touto metodou lze zahrnout:

- Slabá zóna v hrubém kamenivo–maltovém rozhraní téměř zmizí v betonu, v kterém je 40 % portlandského cementu nahrazeno GGBS s měrným povrchem 425 m²/kg. Slabá zóna zmizí úplně, je-li použito 20% GGBS s měrným povrchem specifickou plochou povrchu 600 m²/kg nahrazuje 20 % portlandského cementu. Tyto výsledky byly získány měřením mikrotvrdosti (obr. 5).
- Lze částečně nahradit strusku popílkem. GGBS i FA za současného nahrazení části portlandského cementu jsou účinné v odstranění slabé zóny. [9]

2.3.2 Testování mikrotvrdosti cementových materiálů

S. Igarashi, A. Bentur, a S. Mindess zkoumali vytvrzené cementové pasty a vliv interfaciálního přechodového pásma, pomocí měření mikrotvrdosti. Testovali cementové pasty Vickersovou metodou měření tvrdosti.

\[H_v = \frac{P}{A_s} = 2P \cdot \sin\left(\frac{\alpha}{2}\right) = 1.8544 \frac{P}{d^2}, \]

kde \(P = \) zatížení (N), \(A_s = \) povrchová plocha vtisku (mm²), \(d = \) úhlopříčka vtisku (mm), \(\alpha = \) úhel indentoru je 136°. [10]

Obrázek 6 – Zjednodušený popis pole napětí pod vtlacovaným tělískem a přijímání elasticko-plastického chování. \(P = \) zatížení; \(2a = \) polovina vtisku úhlopříčky (d/2) [10]
Obrázek 7 – Mikrotvrdom vs. porozita pro různé autoklávované a za pokojové teploty vytvrzené cementy a cement-křemenové pasty. [10]

Obrázek 8 – Mikrotvrdomní profily v interfaciálním přechodovém pásmu (ITZ) vytvrzených past vyztužených ocelovými vlákny různého poměru vody k cementu (w/c) [10]

Výsledky:
- Pro správnou mikrostrukturní charakterizaci ITZ, je nutné adekvátně připravit povrch a zvolit správné zatížení.
- Pro měření ITZ je vhodné použít zatížení od 0,02 do 0,05 N.
- Tato metoda je cenná pro studium vlastností cementových past tam, kde byly pozorovány lineární závislosti mezi mikrotvrdom a pevností v tlaku. Zátěžová závislost testu mikrotvrdomi by mohla být užívána pro získání dodatečných parametrů (n, ln KL – což jsou parametry mocninné funkce popisující vztah mezi diagonální vtriku a zatížením [10]) a k určení kvantitativně-mikrostrukturního chování.
- Výklad takových parametrů je založený na empirických vztazích, a proto by měly být užívány v kombinaci s dalšími zkušebními metodami. [10]
2.3.3 Mechanické vlastnosti tenkých film–substrate systémů

Štěpánek, I., Šimůnková, Š., Bláhová, O. se zabývali měřením mechanických vlastností soustav tenký film–podklad systémů na TiN–HSS (high strength steel–vysokopevnostní ocel) systému, připravovaným reaktivním katodovým obloukovým napařováním. Ultra-mělký zátěžový vtisk nabízí flexibilní techniku pro vylišení charakteru nanotvrdostí tvrdých tenkých vrstev. Zatížení vti sku větší než 2 g může způsobit zdeformování substrátu, který může ovlivňovat hodnotu nanotvrdosti. Jestliže je tloušťka tenkých vrstev méně než 2–3 \(\mu \)m, je nemožné dostat správné hodnoty mikrotvrdosti v zatížených větších než 2 g (obr. 9) [11]

![Obrázek 9 – Oblast, která ovlivňuje výsledek testování mikrotvrdosti. Podle předpisu \(t/h > 10 \) to je nezbytné pro použití velmi malého zatižení. Pro TiN tenké vrstvy 2–3 \(\mu \)m se hodí užitečné zatížení asi 2 g. [11]

2.4 Lomová houževnatost a její význam pro indentační zkoušky

Lom tj. dělení tělesa na dvě nebo více části, neproběhne nikdy v celém objemu najednou, ale šíří se z určitého místa. Lom je tedy procesem iniciace a šíření trhliny. Zárodek trhliny vzniká buď při zatěžování během plastické deformace nebo je již v tělese přítomen (vznikl při výrobě nebo předchozím tepelném a mechanickém zpracování). [12]

2.4.1 Měření lomové houževnatosti pomocí mikrotrhlin

2.4.1.1 Metoda založená na měření délky trhlin na povrchu.

Zde se uplatňuje hodnota \(K_{\text{IA}} \) faktoru intenzity napětí, odpovídající zastavení šířící se trhliny. Pro keramiku přibližně platí \(K_{\text{IA}} = K_{\text{IC}} \). Nejčastěji se používá Vickersův tvrdoměr, kdy při dostatečně vysokém zatížení vznikají v úhlopříčkách vtisku radiální trhliny. Tyto trhliny mohou být dvojího druhu: mělké Palmqvistovy (obr. 10a) nebo centrální, mající tvar půlelipsy (obr. 10b).
Obrázek 10 – a) mělké Palmqvistovy trhliny, b) centrální trhliny. r – poloviční délka úhlopříčky vtisku, c – délka Palmqvistovy trhliny, a – délka centrální trhliny.

Pro mělké trhliny se užívá vztah

\[K_{IC} \approx 0.012 \left(\frac{c}{r} \right)^{7/2} \left(\frac{3E}{HV} \right)^{2/3} \cdot HV \cdot r^{1/2}, \quad (8) \]

platný pro \(0.25 < c/r < 1.5 \), kde \(c \) je délka Palmqvistovy trhliny, \(r \) je poloviční délka úhlopříčky vtisku a HV je Vickersova tvrdost. Pro centrální trhlinu platí

\[K_{IC} \approx 0.043 \left(\frac{c}{r} \right)^{7/2} \left(\frac{3E}{HV} \right)^{2/3} \cdot HV \cdot r^{1/2}, \quad (9) \]

kde \(c/r > 2.5 \). Při dosazení \(c, r \) v jednotkách metr a \(E, HV \) v MPa vychází \(K_{IC} \) v obou případech v MPa.m^{1/2}. [12]

2.4.1.2 Metoda založená na měření pevnosti vzorku se zárodečnou trhlinou

Po vytvoření trhliny vtiskem Vickersova indentoru se změří pevnost vzorku v ohybu. Poměrně přesné hodnoty lomové houževnatosti dává metoda vycházející z poznatku, že pevnost v ohybu \(R_{mo} \) vzorku s trhlinou, jež byla vytvořena vtiskem indentoru zatíženého silou \(F \), je touto silou v relaci \(R_{mo} F^{1/3} = \text{konst.} \) Lomová houževnatost \(K_{IC} \) se stanoví z empirického vzorce

\[K_{IC} \approx 0.059 \left(\frac{E}{HV} \right)^{7/8} \left(R_{mo} \cdot F^{1/3} \right)^{3/4}. \quad (10) \]

Pro získání \(K_{IC} \) v Pa.m^{1/2} je třeba dosadit modul pružnosti \(E \), Vickersovu tvrdost \(HV \) a pevnost \(R_{mo} \) v Pa a zatížení indentoru \(F \) v N. Velkou výhodou této metody je, že není třeba měřit rozměry trhliny.

Celkově lze říci, že lomová houževnatost \(K_{IC} \) keramických materiálů leží zhruba v rozmezí 1 až 10 MPa.m^{1/2}. Je tedy 10krát až 100krát nižší než např. u konstrukčních ocelí, což má za následek mnohem větší citlivost na trhliny i další vady. [12]

2.5 Tahová zkouška

Základními mechanickými vlastnostmi konstrukčních materiálů jsou kromě již zmíněných: statická pevnost, mez kluzu, modul pružnosti a jiné. Mechanické zatěžování materiálu má za

2.5.1 Zařízení pro tahovou zkoušku

Deformační stroj pro testování materiálu v tahu je poměrně jednoduché konstrukce (obr. 11). Jeden konec vzorku je upevněn pomocí čelistí k posuvnému příčníku, který se posouvá předepsanou rychlostí. Druhý konec je spojen s měřicí celou (siloměrem), pomocí níž měříme zatěžovací sílu. Vzorek s čelistmi je přitom umístěn v peci, aby mohl experiment probíhat při zvolené teplotě. [14]

![Obrázek 11 – Schéma deformačního stroje: a – pevný rám, b – pohyblivý příčník, c – pec pro udržování potřebné teploty, d – čelisti pro uchycení vzorku, e – deformovaný vzorek, f – měřicí cela. [14]]

2.5.2 Vyhodnocení tahové zkoušky

Zkouška v tahu hodnotí pevnost. Materiál je namáhán silou tak, že dojde k jeho porušení. Kdyby byl materiál izotropní (v reálu nenastává), bylo by napětí rovnoměrně rozloženo v celém průřezu vzorku.

Průběh zkoušky charakterizuje tahová křivka (závislost působícího napětí na deformaci). Při působení síly F na vzorek o průřezu S bude osově napětí

$$\sigma = \frac{F}{S}$$ (11)

Průřez tělesa se při zkoušce mění až do okamžiku vzniku rovnováhy mezi deformací a napětím. Při dalším působení síly se těleso přetrhne. Rovněž dochází k prodlužování tělesa z původní délky \(l_0\) na \(l\) což lze vyjádřit jako relativní prodloužení

$$\varepsilon = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0}$$ (12)

V lineární části tahové křivky platí Hookův zákon – deformace je přímo úměrná síle, konstantou úměrnosti je Youngův modul pružnosti v tahu E:

$$E = \frac{\sigma}{\varepsilon}$$ (13)
Obrázek 12 – obecná tahová křivka materiálu, na které se vyskytují všechny možné napěťové a deformační meze. a – konec lineární oblasti, b – mez kluzu, σ_y – napětí na mezi kluzu, ε_y – deformace na mezi kluzu, g – mez pevnosti, σ_b – pevnost v tahu, ε_b – tažnost. [13]

Lineární oblast křivky (do bodu a) na obrázku 12 popisuje Hookův zákon a charakterizuje elasticitu (pružnost), tedy schopnost látky deformovat se vratně. Oblast nelineární elasticity (mezi body a a b) odpovídá szatížení, kdy část deformace je po odlehčení nevratná. Do bodu meze kluzu nedochází u materiálu ke změně struktury. Po dosažení a překročení meze kluzu (bod b) materiál podléhá plastické deformaci za současně změny struktury a materiál zůstává zdeformován i po té co na něj přestane působit vnější síla. Směrnice lineární závislosti odpovídá Youngovu modulu pružnosti E, body σ_y a ε_y reprezentují napětí a deformaci na mezi kluzu. Stanovují se z prvního lokálního maxima nebo smluvně z bodu, v němž se křivka začíná zřetelně odchylkovat od lineárního průběhu. Poslední bod odpovídá přetržení zkušebního tělesa, určuje pevnost v tahu σ_b a tažnost (deformace při přetržení) ε_b. Plocha pod křivkou udává deformační práci spotřebovanou až do přetržení tělesa, je mírou houževnatosti materiálu. [13]

2.6 Ohybová zkouška

Statická zkouška ohybem se používá hlavně při zkoušení křehkých materiálů, zejména litiny, stavebních hmot apod. U houževnatých, tvárných materiálů nemá význam, neboť k porušení zkušebního tělesa ohybem nedojde – zde se uplatňuje hlavně jako zkouška technologická, případně jako zkouška ohybem u hotových součástí a u různých konstrukčních celků – mostů, jeřábů, křídel letadel apod.

Při zkoušce ohybem se zjišťuje také největší průhyb v okamžiku porušení, který charakterizuje tvárnost (houževnatost) materiálu. Rozměry zkušebních tyčí, které mají obvykle kruhový průřez, jsou stanoveny normou ČSN 420361. Tyč je podepřena na dvou
podporách a jejich vzdálenost l závisí na jejím průměru d : l = 20d. Při zatěžování, které působí uprostřed tyče, je napětí v průřezu rozděleno nerovnoměrně – od maximálních hodnot napětí (v tahu a tlaku) v povrchových vláknech klesá na nulu v neutrální ose. Zkušební tyč je podepřena ve vzdálenosti l na volně otočných válečkách tak, aby podepření nebránilo pohyb tyče a tím i volnému deformování. [15]

2.6.1 Zařízení pro ohybovou zkoušku

Pevnost v ohybu lze stanovit na Michaelisově přístroji (obr. 13). Před zkouškou je nutno vzorek změřit (šířku průřezu b, výšku průřezu h), poté vzorek upravit v Michaelisově přístroji tak, aby byl podepřen v celé své šířce. Zvyšováním působící síly na vzorek dojde k přelomení vzorku a tudíž k provedení zkoušky pevnosti v ohybu.

![Obrázek 13 – Schéma Michaelisova přístroje: 1 – zásobník s broky, 2 – miska na zachycení broků, 3 – zkušební vzorek, 4 – závaží (tárování), 5 – šroub pro upínání vzorku.][16]

![Obrázek 14 – Schéma zatěžování vzorku: F – působící síla, l – vzdálenost podpor, b – šířka průřezu, h – výška průřezu.][16]

2.6.2 Vyhodnocení ohybové zkoušky

Zkouškou jistíme pevnost v ohybu (smluvní napětí na mezi pevnosti) \(\sigma_{po} \)

\[
\sigma_{po} = \frac{M_{0\text{max}}}{W_0}, \quad (14)
\]

kde \(M_{0\text{max}} \) je ohybový moment při maximální zatěžující síle \(F_{\text{max}} \):

\[
M_{0\text{max}} = \frac{F_{\text{max}} \cdot l}{4} \quad (15)
\]

l je vzdálenost podpor.
Modul průřezu W_0 má hodnoty:
pro kruhový průřez:
\[W_0 = \frac{\pi \cdot d^3}{32} \approx \frac{1}{10} d^3 \quad (16) \]
pro čtvercový průřez:
\[W_0 = \frac{a^3}{6} \quad (17) \]
pro obdélníkový průřez: [15]
\[W_0 = \frac{bh^2}{6} \quad (18) \]

2.7 Zkouška v tlaku

Při tlakové zkoušce působí síla v ose zkušebního tělíska, ale má opačný smysl než při zkoušce tahem. Provádí se hlavně u křehkých materiálů namáhaných na tlak – např. u litiny, ložiskových kovů, apod. a u stavebních materiálů (cihly, beton, kámen apod.). Pro houževnatý a tvárný materiál má tato zkouška velmi omezený význam, většinou se provádí jako zkouška technologická. [17]

2.7.1 Vyhodnocení tlakové zkoušky

Křehké materiály se při zkoušce poruší náhle, téměř bez předchozí deformace a to v rovinách, kde tangenciální napětí dosáhne maximální hodnoty, tj. pod úhlem 45 stupňů. V tomto případě odpovídá smluvní napětí při lomu (porušení) pevnosti materiálu v tlaku σ_{pd}:
\[\sigma_{pd} = \frac{F_{\text{max}}}{S_0}, \quad (19) \]
kde F_{max} je maximální zatěžující síla a S_0 je původní průřez.

Houževnaté, tvárné materiály naproti tomu vykazují určité deformace, takže je možné – obdobným způsobem jako u zkoušky tahem – stanovit z průběhu pracovního diagramu smluvní mez kluzu v tlaku σ_{kd} resp. $\sigma_{kd0,2}$:
\[\sigma_{kd} = \frac{F_{kd}}{S_0} \quad (20) \]

U tvárných materiálů se určuje poměrně stlačení (zkrácení – σ_d, tj. zmenšení výšky zkušebního tělíska h vzhledem k původní výšce h_0):
\[\sigma_d = \frac{h_0 - h}{h_0} \cdot 100 \quad (21) \]

Obdobně lze stanovit přičné rozšíření průřezu S vzhledem k původnímu S_0: [17]
\[\psi_d = \frac{S - S_0}{S_0} \cdot 100 \quad (22) \]
2.8 Zkouška tvrdosti podle Brinella

Princip metody (obr. 15) spočívá v zatlačování vnikajícího tělesa – kalené ocelové kuličky (metoda HBS) nebo kuličky z tvrdokovu (metoda HBW) o průměru D – do povrchu zkoušeného tělesa silou F. Po odlehčení se určí průměr vtisku d.

Je vhodná na zkoušení měkkých a středně tvrdých materiálů s heterogenní strukturou. Zkouší se poměrně velký objem vzorku, čímž získáme průměrnou hodnotu tvrdosti celé struktury materiálu. [18]

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{brinella.png}
\caption{Obrázek 15 – Schéma zkoušky podle Brinella: F – zatlačující síla, D – průměr kuličky, d – průměr vtisku, h – hloubka vtisku. [18]}
\end{figure}

2.8.1 Zařízení pro měření tvrdosti podle Brinella

Tvrdoměr na obrázku 16 je opatřen masivním stojanem ve tvaru písmene C. Zatěžovací síla je vyvozována pákovým mechanismem. Horní páka s olejovým tlumičem je spojena prostřednictvím břitu a tlačného čepu s držákem kuličky (indentoru). Na zadním břitu spodní páky je uložen závěs se závažími. Závaží jsou označena písmeny a na tabulce, umístěné na stojanu tvrdoměru, je uvedeno, jaké závaží má být pro dané zatížení použito. Rychlost spouštění zatěžovací páky odpovídající podmínkám zkoušky je zajišťována brzdícím mechanismem, který je poháněn elektromotorem. K umístění zkoušeného vzorku slouží stolek, který je upevněn na vřetenu vedeném ve stojanu vřetene. Vřeteno je výškově nastavitelné pomocí koleček. Rovinné vzorky musí být uloženy na doraz k upínacímu pouzdru. [18]
2.8.2 Vyhodnocení zkoušky tvrdosti podle Brinella

Vztah pro výpočet tvrdosti podle Brinella:

\[
HBS (HBW) = 0,102 \cdot \frac{2 \cdot F}{\pi \cdot D \left(D - \sqrt{D^2 - d^2} \right)}
\]

(23)

\[HBS\] nebo \[HBW\] je tvrdost podle Brinella, \[F\] je zkušební zatížení, \[D\] je průměr kuličky, \[d\] je aritmetický průměr v tisku:
\[
d = \frac{d_1 + d_2}{2}, \text{ konstanta: } 0,102 = \frac{1}{g} = \frac{1}{9,807} \text{ a hloubka vtisku: [18]}
\]

\[
h = \frac{D - \sqrt{D^2 - d^2}}{2}
\]

(24)

2.9 Použité materiály

Pro potřeby ověření uvedených teoretických i empirických vztahů je nejprve potřeba provést měření na strukturně jednoduchém materiálu. Ideálně se v tomto ohledu jeví použití anorganických skel, zejména proto, že se jedná o materiály izotropní a odezva tedy nezávisí na vzájemné orientaci působící síly a krystalové mříže jako je tomu v případě materiálů krystalických anizotropních.

V další části práce byla pozornost zaměřena na geopolymery, neboť se jedná o materiály, které jsou v současnosti ve středu výzkumného zájmu mnoha pracovišť, včetně našeho [19]. Nejprve byl použit jednodušší systém, kdy došlo k mechanické odezvě geopolymerní matrice a bauxitové výplně. Systém byl zvolen s odstupňovaným obsahem bauxitu, neboť bauxit se vyznačuje velmi vysokou pevností v porovnání se samotným geopolymerem a lze tak očekávat dobře pozorovatelný vliv stupně plnění touto výztuží.
Posledním systémem byl materiál tvořený geopolymerní matricí a elektrárenským popílkem. Jedná se o popílek vznikající fluidním spalováním hnědého uhlí. Spaliny jsou dále vedeny přes filtr, kde je odlučován popisovaný popílec. Na tomto systému již předpokládáme větší užitečnost výsledků z hlediska pozorování interfaciálních zón, s tím, že tyto popílky patří mezi sekundární suroviny, jejichž využití je v současnosti rovněž intenzivně zkoumáno [20].

2.9.1 Sklo

Sklo je anorganický amorfní (nekrystalický) materiál, vyrobený tavením vhodných surovin a následným řízeným ochlazením vzniklých skloviny bez krystalizace. Skelný stav vzniká plynulým přechodem ze stavu kapalného do stavu pevného, při ochlazování skla dochází k plynulému růstu viskozity až na tak vysokou hodnotu, že se materiál navenek jeví jako pevná látka. Na rozdíl od krystalických látek postrádá struktura skla pravidelné, symetrické a periodické uspořádání základních stavebních jednotek na delší vzdálenosti (obr. 17). [21]

![Obrázek 17 – Plošné znázornění rozdílů mezi: a – strukturou křemene (krystalického SiO2), b – skelného SiO2, c – sodnokřemičitého skla. [21]]

Sklo může vytvářet celá řada anorganických látek. Nejběžnější jsou skla oxidická a z nich, podle převažující směs, skla křemičitá a borokřemičitá. Pro speciální účely se používají skla fluoridová, fosforečná nebo chalkogenidová (tj. na bázi S – Se – Te). Nejrozšířenějším sklem použivaným ve stavebnictví je sklo soustavy SiO2 – CaO – Na2O. Z chemického hlediska jsou běžná skla tuhým roztokem různých křemičitanů sodných, draselných, vápenatých, případně olovnatých nebo barnatých, které jsou doprovázeny dalšími složeninami, zejména oxidy kovů. [21]

2.9.2 Geopolymer

Geopolymery řadíme do kategorie minerálních kompozitních materiálů netradičního složení, které v podstatě imitují anorganické minerály – zeolity. „Pravé“ geopolymery jsou definovány jako alkalické aluminosilikáty bez obsahu vápenaté složky připravované nejčastěji alkalickou aktivací metakaolinu roztokem hydroxidu sodného (draselného) a/nebo vodním sklem. Reakcí za nezvýšené teploty vzniká amorfní trojrozměrná mikrostruktura, v níž jsou křemičitanové a hlinitanové tetraedry vzájemně nepravidelně vázány polykondenzací přes
kyslíkový můstek (prekursory zeolitů). Hliník je v koordinačním čísle 4, negativní náboj tetraedru \([\text{Al(OH)}_4]^-\) je kompenzován hydratovaným kationtem alkalického kovu.

Základní vliv na mikrostrukturu a tím i na vlastnosti (pevnosti) ztvrdlého kompozitu má molární poměr \(\text{Na(K)} : \text{Si} \).\ Al, jak ukazuje obrázek 19, kdy při optimalizovaných hodnotách 1,2 \(\text{Na}_2\text{O}.\text{Al}_2\text{O}_3.2-3\text{SiO}_2.\text{nH}_2\text{O}\) vykazuje geopolymer nevyšší pevnosti. Jiné studie[36, 37], doporučují vyšší obsah oxidu křemičitého. Zatímco disilikátové anionty \(\text{Si}_2\text{O}_7^{2-}\) s vazbou \(-\text{Si}-\text{O}-\text{Si}-\) jsou v roztokách běžné event. převládající, obdobný dialuminátový anion \(-\text{Al}-\text{O}-\text{Al}-\) neexistuje (Löwensteinovo pravidlo). Příčná vazba přes kyslíkový můstek (cross-linking bond) je často oprávněně přirovnávána k nanovláknům. [19]

Obrázek 18 – Představa neuspořádané struktury geopolymerního materiálu [19]

Poměr draselné k sodné složce nemá na vlastnosti výsledného produktu výraznější vliv, nicméně draselná komponenta přispívá k tvorbě geopolymerních prekursorů zeolitů a údajně zvyšuje pevnosti. Velmi důležitou podmínkou je dodržení nepříliš vysokého obsahu vody, takže optimalizované složení geopolymuru je 1,2\(\text{Na}_2\text{O}.\text{Al}_2\text{O}_3.4\text{SiO}_2.12\text{H}_2\text{O}\). Vyšší obsah vody je příčinou nižších pevností. Reakční průběh v tuhnuči a tvrdnoucí lze výhodně sledovat kalorimetricky. Zeolity jsou jakožto jedna z hlavních složek starověkých malt a betonů hlavním nositelem jejich pevnosti a dlouhodobé stálosti.

Za vyšších teplot amorfní struktura přechází v (mikro)krystalickou, což je doprovázeno zvýšením pevnosti, obdobně působí autoklálování. Z rozmanitých možností využití se tyto kompozity uplatňují např. v architektuře při výrobě figurálních ozdobných prvků (“odlítků“) na fasády budov, při opravách kamenných staveb a pomníků a v sochařství. [19]
2.9.3 Bauxit

Bauxit je hornina složená z několika minerálů zahrnující hydroxidy hliníku, gibbsit, böhmít, diaspor, Al₂O₃·2H₂O a oxidy železa. Dříve byl klasifikován jako minerál, ale v současné literatuře se uvádí bauxit jako hornina. Svůj název dostal podle obce Les Baux-de-Provence v jižní Francii. Různé složení bauxitu má za následek, že i jeho fyzikální a chemické vlastnosti se mění v závislosti na procentuálním zastoupení prvků.

Bauxit je nejdůležitější průmyslová ruda pro získávání hliníku, který má široké uplatnění od výroby obalů po letecký průmysl. Bauxity jsou také důležitým zdrojem vzácných kovů jako například gallia, germania a scandia. Méně kvalitní bauxity (s menším obsahem hliníku) se využívají při výrobě brusiv, kamenců, žáruvzdorných materiálů, k výrobě syntetického korundu a další.

V technologii anorganických materiálů se dále kalcinovaný bauxit, podobně jako čedič osvědčil jako velice pevné a účinné mikrokamenivo v tzv. vysokohodnotných betonech pro zvláštní použití, např. pro ostění trezorů a jiných stavebně-bezpečnostních prvků [22].

2.9.4 Popílek

Chemicko-mineralogické složení fluidních popílků se vzhledem k použití technologií spalování zcela zásadně odlišuje od skladby klasických vysokoteplotních popílků. Zatímco hlavními fázemi vysokoteplotních popílků jsou amorfní SiO₂, křemen, obě vysokoteplotní modifikace – cristobalit i tridymit a mullit, obsahuje fluidní popílek hlinitokřemičitou fázi, křemen, nerozpuštěný anhydrit II, volné CaO, event. též Ca(OH)₂ a CaCO₃. Z uvedeného vyplývá, že vysokoteplotní popílky vykazují výhradně pucolanitu, kdežto popílky fluidní mají díky přítomnosti vápených iontů samy o sobě i hydraulické schopnosti. Po rozmíchání fluidních popílků s vodou dochází totiž ihned ke vzniku ettringitu jako raného hydratačního produktu, u kterého může s dobou uložení, patrně i v závislosti na podmínkách expozice,
docházet k jeho dílčí přeměně na monosulfát případně i sádrovec a patrně i CAH – fáze. Z uvedeného plyne, že využití fluidních popílků pro přípravu stavebních hmot je do určité míry diskutabilní. Přes určité hydraulické schopnosti, které jsou jeho pozitivní stránkou, může díky povaze hydratačních zplodin vykazovat určitou termodynamickou nestabilitu, která může negativně ovlivnit jeho výsledné vlastnosti. Jelikož mají fluidní popílky svým chemicko-mineralogickým složením z pojiv používaných ve stavebnictví nejblíže k portlandským cementům, dá se předpokládat, že mohou být k jejich přípravě s úspěchem použity. [23]
3 CÍLE PRÁCE

Předkládaná diplomová práce si klade za úkol zjistit a ověřit možnosti měření mechanických vlastností anorganických materiálů na úrovni strukturních fází a jejich rozhraní. Předpokladem je nashromáždění dostatečného množství výsledků jednak s ohledem na statistická zpracování, jednak na ověření správnosti výsledků různými experimentálními metodami. Výchozím předpokladem je ověření základních vztahů a zvládnutí experimentální techniky na jednoduchém materiálu, dále ověření získaných údajů a vztahů na dobře definovaném materiálu vícefázovém a konečně využití poznatků k charakterizaci v praxi užívaných systémů, které jsou v poli zájmu současného vědeckého výzkumu anorganických materiálů. Konkrétní kroky, kterými bude třeba výsledků dosáhnout jsou

- Shromáždění a důkladná charakterizace materiálové základny
- Měření základních mechanických parametrů jednoduchých i složitých soustav – pevnost v tlaku, ohybu, modul pružnosti, pevnost v tahu
- Ověření možností různých metod měření tvrdosti (Brinell, Vickers, mikrotvrdost) pro charakterizaci anorganických materiálů
- Nalezení a ověření vztahů výsledků indentačních zkoušek a ostatních mechanických vlastností
- Příprava jednoduchých modelových vícefázových materiálů a jejich charakterizace
- Charakterizace fázových rozhraní v geopolymerních materiálech obsahujících sekundární suroviny (popílek, struska aj.)
- Kritické zhodnocení ovlivnění výsledků měření komplikovaností struktury
4 EXPERIMENTÁLNÍ ČÁST

4.1 Užité přístroje

4.1.1 Elektronový mikroskop

Pro charakterizaci zkoumaných materiálů byl použit elektronový mikroskop Philips XL 30 (obr. 20) vybavený detektorem: EDAX CDU™ LEAP™ DETECTOR [24]. Zkoumání povrchu skleněných a geopolymerních materiálů bylo prováděno za urychlovacího napětí 20,0 kV při různém zvětšení (25-1000x), pro snímky vtisků ve skle byl použit detektor sekundárních elektronů, v případě geopolymerů byl použit detektor odražených elektronů.

![Obrázek 20 – Elektronový mikroskop Philips XL 30 [24]](image)

4.1.2 Tvrdoměr podle Brinella

Pro měření tvrdosti materiálu byl použit tvrdoměr LECO DLTC 3000 (obr. 21), který vytvořil vtisky v heterogenních materiálech (geopolymerech) podle Brinella. Průměry vtisků byly určeny pomocí stereomikroskopu Olympus SZ61 (obr. 21) (s přidaným osvětlovacím zařízením VisiLED), který byl spojený s počítačem a v softwaru Quick PHOTO Industrial 2.3 byly přesně určeny hodnoty Brinellovi tvrdosti.
4.1.3 Tvrdoměr podle Vickerse

Pro měření tvrdosti některých materiálů byl použit tvrdoměr LECO LV-700L (obr. 22) s indentorem podle Vickerse a zatížením patřícím do oblasti tvrdosti. Vyhodnocení výsledných tvrdostí bylo provedeno přímo na použitém tvrdoměru pomocí objektivů umístěných na otočné hlavě. Hodnoty tvrdostí byly zobrazeny na dotykovém displeji.
4.1.4 Mikrotvrdoměr

Pro měření mikrotvrnosti jednotlivých fází a přechodů mezi fázemi byl použit mikrotvrdoměr LECO LM 247 AT se softvarem LECO AMH – 2000 (*obr. 23*). Díky připojení na počítač a otočné hlavě mikrotvrdoměru na které byly různé objektivy pro zvětšení a přesné zaměření místa vpichu bylo možno k měření vybírat jednotlivé fáze a dokonce i rozhraní fází.

Obrázek 23 – Mikrotvrdoměr LECO LM 247 AT se softvarem LECO AMH – 2000 [27]

4.1.5 Přístroj měřící pevnost v tahu

Pro měření pevnosti v tahu skleněných vzorků byl použit mechanický zkušební stroj TIRA test 2300 řízený počítačem (*obr. 24*). Při měření bylo použito předpětí 20 N a rychlost zatížení 1 mm/min.

Obrázek 24 – Mechanický zkušební stroj TIRA test 2300 [27]
4.1.6 Michaelisův přístroj (měření pevnosti v ohybu)

Zařízení pro zkoušení pevnosti v ohybu musí být schopno vynaložit a změřit sílu nejméně do 6,3 kN s přesností 1 %. Vlastní lámací mechanismus sestává ze dvou válcových opěr o průměru 10 mm, vzdálených od sebe 80 mm pro trámečky 20x20x100 mm. Třetí tlačný válec má průměr rovněž 10 mm a je umístěn přesně uprostřed předchozích dvou. Tři vertikální roviny proležené osami válců musí být rovnoběžné během celé zkoušky. Každé dva roky musí být zařízení úředně ověřeno podle normy ČSN 72 2117. [28]

Obrázek 25 – Michaelisův přístroj s brokovou zátěží [28]

Zkušební trámečky byly umístěny postupně bočními plochami symetricky na opěrné válce a bylo provedeno postupné zatěžování. Nárůst tlaku na válec, musí být 50 ± 5 N.s⁻¹, až do okamžiku lomu. Na Michaelisově přístroji s brokovou zátěží bylo celkové zatížení zjištěno zvážením zátěže. [28]

Ohybové zkoušky byly provedeny na Michaelisově přístroji s brokovou zátěží s převodem 1 : 50. Hodnoty udávající pevnost v ohybu byly vypočteny podle vzorců:

- pro kruhový průřez (skleněné tyče):
 \[\sigma_{po} = \frac{8 \cdot 50 \cdot m \cdot g \cdot l}{\pi \cdot d^3}, \]
 kde \(m \) je hmotnost zátěže, \(g \) je gravitační zrychlení, \(l \) je vzdálenost podpěr a \(d \) je průměr tyče.

- pro čtvercový průřez (geopolymerové trámečky):
 \[\sigma_{po} = \frac{3 \cdot 50 \cdot m \cdot g \cdot l}{2 \cdot \pi \cdot a^3}, \]
 kde \(a \) je čtvercový průřez.

Pro trámečky 20x20x100 mm: \(\sigma_{po} = 7,35 \cdot m_z \), kde \(\sigma_{po} \) je pevnost v ohybu MPa a \(m_z \) je hmotnost zátěže, tj. nádoby s broky, v kg.
4.1.7 Lis pro měření pevnosti v tlaku

Zařízení pro zkoušení pevnosti v tlaku sestává ze dvou broušených ploch z oceli, uspořádaných tak, že během zkoušky jsou osové přesně nad sebou. Odchyly rovinnosti obou plošek nesmí být větší než ± 0,01 mm.

Pro zkušební trámečky o rozměrech 20x20x100 mm bylo použito zařízení, kde obě broušené plochy byly pevně umístěny ve stativu a jejich velikost byla přizpůsobena velikostem trámečků, tj. měly rozměr 20x20 mm. Lisovací plocha tedy byla 400 mm². Zkušební lis musí vyvinout sílu 20 až 600 kN s přesností 3 %. Každé dva roky musí být úředně prověřen podle normy ČSN 72 2117.

Pevnost v tlaku se zkouší na zlomcích trámečků. Očištěné zlomky se položí bočními plochami mezi obě destičky, přičemž se rovnou čelní stranou dorazí k zarážce. Po kontrole uložení a nastavení ploch jsou zlomky trámečků zatěžovány. Nárůst tlaku musí být 150 ± 50 N.cm⁻².s⁻¹, tj. 3,7 kN.s⁻¹ na plochu 2500 mm² zlomku. Na počátku může být vzrůst síly rychlejší. Celkově nesmí však být zatěžování ukončeno dříve než za 10 s. [28]

Pevnost v tlaku se vypočte ze vzorce:

\[\sigma_{pd} = \sigma_p \frac{d}{F} \]

kde \(\sigma_{pd} \) je pevnost v tlaku v MPa a \(\sigma_p \) síla nutná k porušení zlomku trámečku v N.

![Obrazek 26 – Lis na měření pevnosti v tlaku [28]](image)

4.1.8 Metalografická bruska

Pro přípravu povrchu vzorků, který je velmi důležitý pro měření většiny mechanických vlastností, byla použita metalografická bruska MTH Kompakt 1031 (obr. 27) s výměnnými brusnými a leštícími kotouči.
4.1.9 Metalografický lis

Pro přípravu skleněných tyčí a koulí na následující měření tvrdosti byl použit lis MTH Standard 30 (obr. 28). Tyče a koule byly zalísovány do bakelitové směsi a vylísovány do tvaru válce, vhodného pro další úpravu (broušení, leštění).

4.1.10 Vakuová naprašovačka

Pro přípravu vodivého povrchu vzorků (skla, geopolymerů) na následující charakterizací pomocí elektronového mikroskopu, byla použita vakuová naprašovačka POLARON SC 7640 (obr. 29).
4.1.11 Vibrační mlýn

Pro namletí hrubého bauxitu byl použit vibrační mlýn typ: VM4 (obr. 30), výrobce: Okresní podnik služeb Přerov., model ´82. Pomocí vibračního mlýnu byly mlety jednotlivé fluidní popílky, které byly poté podrobeny charakterizaci struktury a použity při přípravě geopolyrních směsí.

4.1.12 Sítová analýza

Pro získání úzké frakce bauxitu (80 – 100 μm) a frakce SUKu pod 63 μm byl použit přístroj pro síťovou analýzu Retsch AS 200 (obr. 31).

4.1.13 Míchačka

Pro dokonalé smísení při výrobě geopolymerů byla použita míchačka KitchenAid ARTISAN Model 5KSM150 (obr. 32).
4.1.14 Komorová elektrická pec

Pro zajištění stejné tepelné historie skleněných vzorků a vyrovnaní vnitřního pnutí byly skleněné tyče žíhány v peci CLASIC 5014, model 1995 (obr. 33).

Obrázek 33 – Komorová elektrická pec CLASIC 5014

4.1.15 Ultrazvuková zkoušečka modulu pružnosti

Pro zjištění modulu pružnosti skleněných materiálů byla použita ultrazvuková zkoušečka Tonindustrie Prüftechnik GMBH materials tester type 541 (obr. 34). Při měření ultrazvukem se zjišťuje doba průchodu ultrazvuku mezi dvěma protilehlými stěnami vzorku. Ultrazvukový signál je upraven tak, aby na změnu rychlosti jeho průchodu zkoušeným tělesem měly vliv jen změny makrostruktury materiálu (trhliny, dutiny, nehomogenity).

Pro Youngův modul pružnosti platí:

$$E = \rho \cdot c^2 \text{ [kg.m}^{-1}\text{s}^{-2}]$$, \hspace{1cm} (27)

kde c je rychlost ultrazvuku v materiálu [m.s$^{-1}$] a ρ je hustota materiálu [kg.m$^{-3}$].

Obrázek 34 – Tonindustrie Prüftechnik GMBH materials tester type 541

4.2 Připravené vzorky

4.2.1 Sklo-tyče

Pro měření mechanických vlastností (pevnosti v tahu, tlaku, ohybu a určení tvrdosti i mikrotvrdosti) byly použity skleněné laboratorní tyčinky o průměru 5,93 mm až 5,98 mm. Z těchto tyčinek byly připraveny jednak vzorky pro měření pevnosti v tahu a jednak krátké vzorky pro měření pevnosti v tlaku, modulu pružnosti a tvrdosti.
Pro měření pevnosti v tahu byly použity skleněné tyče upravené ve sklářské dílně na vhodný tvar (obr. 35) pro uložení do upínacích hlav na zkušebním stroji TIRA test 2300.

Obrázek 35 – Skleněná tyč použitá pro měření pevnosti v tahu

Pro zajištění stejné tepelné historie skleněných vzorků a vyrovnání vnitřního pnutí byly skleněné tyče žíhány v peci CLASIC 5014 při teplotě 500 °C po dobu 12 hodin. Vzorky po té samovolně chladily dalších 12 hodin na laboratorní teplotu v uzavřené peci, čímž bylo zajištěno velice pozvolné snižování teploty.

Pro měření pevnosti v tlaku byly připraveny vzorky o výšce cca 8 mm. Čelní plochy byly vybroušeny tak, aby byly planparalelní s max. odchylkou 0,01 mm. Tyto vzorky byly tepelně zpracovány popsaným způsobem.

Pro měření mikrotvrdosti byly obdobným způsobem připraveny válce o výšce cca 15 mm. Tyto válce byly zality do tablet metalografickou epoxidovou pryskyřicí Epofix, Struers (doba tuhnutí 8 hodin, minimální objemová kontrakce). Vzorky byly po té vybroušeny na
metalografické brusce s finálním leštěním diamantovou pastou (leštící kotouč DP Mol, pasta se středním rozměrem zrna 1,0 μm).

U skla použitého pro tyto vzorky (dále SKLO-TYČE) byla pyknometricky zjištěna hustota ρₜ = 2,23 g/cm³. Prvkové složení zjištěné EDS analýzou (obr. 36) na SEM pomoci plošné analýzy při zvětšení 100× (0,625 mm²) odpovídá (at.%): 24,9 % Si, 2,6 % Na, 1,3 % Al, 0,3 % K a 70,8 % O.

4.2.2 Sklo – koule

Pro porovnání výsledků mechanických vlastností (pevnosti v tlaku, tvrdosti a mikrotvrdosti) měrených u skleněných tyčí, byly použity technické skleněné koule o průměru 10 mm. U těchto kouli dodavatel udává [30] vlastnosti shrnuté v tab. 4:

<table>
<thead>
<tr>
<th>Tabulka 4 – Fyzikální vlastnosti skleněných kouli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyzikální vlastnosti</td>
</tr>
<tr>
<td>specifická hmotnost</td>
</tr>
<tr>
<td>koeficient teplotní roztažnosti</td>
</tr>
<tr>
<td>sypká hmotnost</td>
</tr>
<tr>
<td>tvrdost podle Mohse</td>
</tr>
<tr>
<td>tvrdost podle Vickerse a Rockwella</td>
</tr>
<tr>
<td>modul pružnosti</td>
</tr>
<tr>
<td>modul pružnosti E podle Younga</td>
</tr>
<tr>
<td>průměr</td>
</tr>
<tr>
<td>pevnost v tlaku</td>
</tr>
<tr>
<td>počet kusů v 1 kg</td>
</tr>
<tr>
<td>kontaktní povrch</td>
</tr>
</tbody>
</table>

Hustota těchto kouli byla ρₖ = 2,57 g/cm³, prvkové složení získané EDS (obr. 37) plošnou analýzou při zvětšení 50× (2,5 mm²) odpovídá (at.%): 21,6 % Si, 11,4 % Na, 2,5 % Ca, 1,7 % Al, 1,1 % Mg a 61,7 % O.
Tyto koule byly zalisovány na metalografickém lisu do bakelitové pryskyřice a na takovýchto vzorcích byly připraveny rovinné plochy pro měření tvrdosti.
Dále byly na těchto koulích vybroušeny planparalelní plochy za účelem měření modulu pružnosti ultrazvukovou metodou a měření pevnosti v tlaku.

4.2.3 Suroviny pro přípravu geopolymerních směsí

4.2.3.1 Metakaolin
Metakaolin (MK) Mefisto L05 2008 (České lupkové závody a.s., Nové Strašecí). Připravuje se z úletů od pálení kaolinu a jejich následným výpalem. Složení použitého materiálu bylo 42,5 % Al₂O₃ a 51,5 % SiO₂ se střední velikostí zrna D₅₀ pod 5 μm. Důležité je nejen fázové a chemické složení výchozího metakaolinu, ale i fyzikální stav (granulometrie, měrný povrch) spoluurčující jeho reaktivitu. Setřesná hmotnost – 558 kg/m³, vlhkost – 0,74 hm.% a měrný povrch – 12,7 m²/g.

4.2.3.2 Hydroxid sodný
Roztok hydroxidu sodného rozkládá efektivně metakaolin až při vyšších molárních koncentracích (12 - 15 M). Byl použit hydroxid sodný dodavatele Lach:ner, 98 %.

4.2.3.3 Voda
Laboratorní deionizovaná voda, vodivost 0,7 μs.cm⁻¹.

4.2.3.4 Vodní sklo
Vodní sklo sodné, silikátového směsi připravuje roztokem hydroxidu sodného nejčastěji na hodnotu 1 až 1,3, použitý komerční produkt obsahoval 12,5 % Na₂O. Vyšší silikátové modul
způsobuje rychlejší tuhnutí. Vodní sklo draselné obsahovalo 16,5 % K₂O, ale v praxi je méně používané, protože draselné sloučeniny jsou nákladnější.

4.2.3.5 SUK

Křemenný písek (Sklopísek Střeleč), mikromletý o D₅₀ menší než 9 μm (obr. 38), je často označován zkratkou SUK (speciálně upravený křemen). Použitý SUK byl přesíván a použita byla frakce zrn menších než 63 μm.

Tabulka 5 – Fyzikální vlastnosti speciálně upraveného křemenu a jeho chemické složení [31]

<table>
<thead>
<tr>
<th>Fyzikální vlastnosti</th>
<th>Chemická analýza (RFA) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifická hmotnost</td>
<td>2650 kg/m³</td>
</tr>
<tr>
<td>střední velikost zrna (D₅₀)</td>
<td>9 μm</td>
</tr>
<tr>
<td>povrch zrna</td>
<td>6122 cm²/kg</td>
</tr>
<tr>
<td>sypká hmotnost</td>
<td>900 kg/m³</td>
</tr>
<tr>
<td>vlhkost</td>
<td>0,2 hm.%</td>
</tr>
<tr>
<td>tvrdost podle Mohse</td>
<td>7</td>
</tr>
<tr>
<td>SiO₂</td>
<td>99,6</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0,3</td>
</tr>
<tr>
<td>Na₂O + K₂O</td>
<td>0,1</td>
</tr>
<tr>
<td>CaO + MgO</td>
<td>0,1</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0,02</td>
</tr>
</tbody>
</table>

![Distribuční funkce propadová y(x), zbytková yR(x) a frekvenční y'(x)](image)

Obrázek 38 – Distribuční funkce použitého SUKu pro přípravu geopolymerů. Hodnota x₅₀ = 9 μm je medián odečtený z distribučních funkcí a hodnota xₐ = 1,5 μm. je modus odečtený z frekvenční funkce.
4.2.3.6 Bauxit

Tavený bauxit (Bode-panzer, Rajhrad) byl pomletý na vibračním mlýně viz kapitola 4.1.11 po dobu 5 minut a následně sítován na přístroji pro sítovou analýzu viz kapitola 4.1.12. Podle poměru frakcí byla s ohledem na časovou i energetickou náročnost použita úzká frakce o velikosti zn. 80 – 100 μm. Snímek prášku z SEM je uveden na obr. 39, výsledek EDS prvkové analýzy na obr. 40. Výsledné složení odpovídá (at.%) 26,6 % Al, 66,7 % O, 4,3 % Si, 0,2 % P, 0,1 % K, 0,3 % Ca, 1,1 % Ti a 0,7 % Fe.

U použitého bauxitu byla zjištěna pyknometricky hustota $\rho_b = 3,57 \text{ g/cm}^3$. Měření pevnosti v tlaku bylo provedeno na vybraných částicích o rozměrech přesahujících 5 mm, které byly bez zjevných defektů. Tyto vzorky byly pečlivě připraveny (vybroušeny a vyleštěny planparalelní plochy) na měření pevnosti v tlaku a modulu pružnosti ultrazvukovou zkouškou.

Obrázek 39 – Bauxitová zrna o velikosti 80 – 100 μm, spektrum z plošné analýzy je uvedeno na obr. 40.

Obrázek 40 – Výsledek EDS analýzy bauxitu
4.2.3.7 Popílek

Obrázek 41 – Fluidní popílek z filtru v Ledvicích
Obrázek 42 – Porovnání EDS spekter dvou částic popílku, A – ve vzorku GP-10%FA-Na, B – ve vzorku GP-10%FA-K. Spektra jsou uvedena za cenu horší čitelnosti vedle sebe pro zřejmou skutečnost, že již vizuálně jsou prakticky stejná.

Tabulka 6 – Výsledek EDS analýzy dvou zrn popílku, kdy každé bylo nalezeno v jiném vzorku geopolymerního materiálu

<table>
<thead>
<tr>
<th>Geopolymer</th>
<th>Prvkové složení v popílku [at.%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
</tr>
<tr>
<td>GP-10%FA-Na</td>
<td>71,6</td>
</tr>
<tr>
<td>GP-10%FA-K</td>
<td>73,2</td>
</tr>
</tbody>
</table>

Z výsledků je zřejmé, že složení zrn je prakticky stejné, není ovlivněno ani odlišným složením okolní matrice.

4.2.4 Příprava vzorků geopolymerních směsí

Všechny geopolymery v tabulce 7, 8 byly připraveny stejním postupem. Hydroxid sodný byl rozpuštěn v malém množství vody (~ 9 ml). Metakaolin Mefisto L05 byl nasypán do míchačky KitchenAid a za stálého míchání byl pomalu přiléván roztok hydroxidu sodného. Vzniklá relativně suchá směs byla michána 15 minut. Poté bylo přidáno vodní sklo (sodné, draselné) a michání probíhalo dalších 15 minut. Po takto důkladném promíchání říšší směsi byla provedena konečná úprava konzistence přidávkem předepsaného množství SUKu (s bauxitem či popílkem). Po získání vhodné konzistence (tuhého těsta) pomocí přídavku vody, byla takto vzniklá směs michána 10 minut. Vzniklá směs byla umístěna do ocelové formy, rozdělené na tři trámců o velikosti 20x20x100 mm a forma se směsí byla umístěna po dobu čtyř minut na vibrační stůl. Po odstranění vmíchaných bublin byla forma s geopolymerní směsí umístěna, za laboratorní teploty a vlhkosti na klidné místo. Odformování geopolymerních trámců bylo prováděno po uplynutí dvou dnů od míchání směsi. Geopolymerní trámce byly umístěny do papírové krabice, kde probíhal proces tvrdnutí (polykondensace) po dobu 28 dní od namíchání geopolymerní směsi.
Pro měření mechanických vlastností byly připraveny geopolymery o složení uvedeném v **tabulce 7, 8**. Základní receptura byla převzata a konzultována s autory [19, 28]. Od každé směsi byly připraveny tři trámce o rozměrech 20x20x100 mm. Prvních pět geopolymérů se liší obsahem bauxitu a to tak, že 0 % až 20 % navážky SUKu bylo nahrazeno bauxitem.

Poslední dvě směsi byly připraveny za použití odlišných vodních skel (sodné a draselné) a místo bauxitu (o obsahu 10 %) byl použit fluidní křemičito-vápenatý popílek z filtru v Ledvicích. Účelem těchto vzorků je pozorování ovlivnění mechanických vlastností fázových rozhraní různým obsahem sodíku ve směsi.

Tabulka 7, 8 – Složení geopolymérů:

<table>
<thead>
<tr>
<th>Složka</th>
<th>GEOPOLYMERY</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GP 0 %</td>
<td>GP 5 %</td>
<td>GP 10 %</td>
<td>GP 15 %</td>
<td>GP 20 %</td>
<td></td>
</tr>
<tr>
<td>NaOH</td>
<td>8,30 g</td>
<td>8,30 g</td>
<td>8,30 g</td>
<td>8,30 g</td>
<td>8,30 g</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>40,00 ml</td>
<td>35,00 ml</td>
<td>39,00 ml</td>
<td>34,00 ml</td>
<td>34,00 ml</td>
<td></td>
</tr>
<tr>
<td>Mk Mefisto</td>
<td>36,70 g</td>
<td>36,70 g</td>
<td>36,70 g</td>
<td>36,70 g</td>
<td>36,70 g</td>
<td></td>
</tr>
<tr>
<td>Na vodní sklo</td>
<td>53,30 g</td>
<td>53,30 g</td>
<td>53,30 g</td>
<td>53,30 g</td>
<td>53,30 g</td>
<td></td>
</tr>
<tr>
<td>SUK</td>
<td>225,00 g</td>
<td>213,75 g</td>
<td>202,50 g</td>
<td>191,25 g</td>
<td>180,00 g</td>
<td></td>
</tr>
<tr>
<td>Bauxit</td>
<td>0,00 g</td>
<td>11,25 g</td>
<td>22,50 g</td>
<td>33,75 g</td>
<td>45,00 g</td>
<td></td>
</tr>
<tr>
<td>Hm.% bauxitu</td>
<td>0,00</td>
<td>3,14</td>
<td>6,21</td>
<td>9,45</td>
<td>12,59</td>
<td></td>
</tr>
<tr>
<td>Obj.% bauxitu</td>
<td>0,00</td>
<td>2,25</td>
<td>4,50</td>
<td>6,75</td>
<td>9,00</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 7, 8 – Složení geopolymérů:

<table>
<thead>
<tr>
<th>Složka</th>
<th>GP-10%FA-Na</th>
<th>GP-10%FA-K</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH</td>
<td>8,30 g</td>
<td>8,30 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>41,00 ml</td>
<td>20,00 ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mk Mefisto</td>
<td>36,70 g</td>
<td>36,70 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUK</td>
<td>202,50 g</td>
<td>202,50 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popílek Ledvice</td>
<td>22,50 g</td>
<td>22,50 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na vodní sklo</td>
<td>53,30 g</td>
<td>0,00 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K vodní sklo</td>
<td>0,00 g</td>
<td>67,30 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauxit</td>
<td>0,00 g</td>
<td>0,00 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GP = geopolymer, MK Mefisto = Metakaolin Mefisto L05 2008, SUK = speciálně upravený křemen, Popílek Ledvice = křemičito-vápenatý fluidní popílek z filtru v Ledvicích. Hm.% bauxitu jsou počítána v původní směsi (tuhého těsta).

V dalším textu bude mít označení vzorků následující význam:

1. V případě řady geopolymerních směsí s různým obsahem bauxitu budou vzorky značeny Geopolymer X % nebo GP X % kde X je podíl hmotnosti bauxitu nahrazujícího SUK vztažený k hmotnosti SUKu ve směsi bez náhrady (tj. GP 0 %, kde je 225 g SUKu)
2. V případě směsí obsahujících popílky bude užíváno označení GP-10%FA-Na nebo GP-10%FA-K vyjadřující, že se jedná o směs, kde je 10 procent SUKu nahrazeno popílkem a Na resp. K vyjadřuje druh užitého vodního skla. Pro tyto vzorky bude pro lepší čitelnost textu užíváno též označení Na L resp. K L.
5 VÝSLEDKY A DISKUSE

5.1 Sklo-tyče

Výsledky pevnosti v ohybu byly získány na Michaelisově přístroji a byly vyhodnoceny podle vztahu (25) z odst. 4.1.6.

Tabulka 9 – Pevnost v ohybu skleněných tyčí

<table>
<thead>
<tr>
<th>Tyč číslo</th>
<th>Průměr [mm]</th>
<th>Zatížení [kg]</th>
<th>Pevnost v ohybu [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,93</td>
<td>0,290</td>
<td>139,0</td>
</tr>
<tr>
<td>2</td>
<td>5,93</td>
<td>0,380</td>
<td>182,1</td>
</tr>
<tr>
<td>3</td>
<td>5,93</td>
<td>0,385</td>
<td>184,5</td>
</tr>
<tr>
<td>4</td>
<td>5,93</td>
<td>0,380</td>
<td>182,1</td>
</tr>
<tr>
<td>5</td>
<td>5,93</td>
<td>0,380</td>
<td>182,1</td>
</tr>
</tbody>
</table>

Průměr 183
Sm. odchylka 1

Při výpočtu průměrné hodnoty pevnosti v ohybu nebyl započítán výsledek u tyče číslo 1, neboť byl Q-testem vyhodnocen jako odlehlý. Odlišnost výsledku byla nejspíše způsobena vnitřní vadou ve vzorku. Průměrná pevnost v ohybu skla byla \(\sigma_{po} = 183 \pm 1 \) MPa.

Výsledky pevnosti v tlaku byly získány na lisu a byly vyhodnoceny podle vztahu (19) z odst. 2.7.1.

Tabulka 10 – Pevnost v tlaku skleněných tyčí

<table>
<thead>
<tr>
<th>Tyč číslo</th>
<th>S [mm²]</th>
<th>Síla [N]</th>
<th>Pevnost v tlaku [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,27</td>
<td>5750</td>
<td>203,4</td>
</tr>
<tr>
<td>2</td>
<td>27,81</td>
<td>6500</td>
<td>233,8</td>
</tr>
<tr>
<td>3</td>
<td>27,34</td>
<td>4500</td>
<td>164,6</td>
</tr>
<tr>
<td>4</td>
<td>27,34</td>
<td>5750</td>
<td>210,3</td>
</tr>
<tr>
<td>5</td>
<td>27,71</td>
<td>6250</td>
<td>225,5</td>
</tr>
<tr>
<td>6</td>
<td>27,62</td>
<td>5250</td>
<td>190,1</td>
</tr>
</tbody>
</table>

Průměr 205
Sm. odchylka 23
Pevnost v tahu byla měřena na přístroji TIRA 2300. Získané tahové křivky jsou uvedeny na obr. 43.

Obrázek 43 – Průběh měření pevnosti v tahu skleněných tyčí. V grafu jsou označeny jednotlivé tahové křivky, označení odpovídá označením v tabulce 1.

Vyhodnocení modulu pružnosti bylo provedeno určením směrnice tahových křivek podle vztahu (13), odst. 2.5.2. Získané hodnoty jsou uvedeny v tabulce 11.

Tabulka 11 – Pevnost v tahu skleněných tyčí. \(v = \) rychlost zatěžovací rychlosti, \(a = \) průměr tyčí

<table>
<thead>
<tr>
<th>Vzorek číslo</th>
<th>(v) [mm/min]</th>
<th>(a) [mm]</th>
<th>(F) [N]</th>
<th>Pevnost v tahu [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,25</td>
<td>5,98</td>
<td>774,0</td>
<td>27,6</td>
</tr>
<tr>
<td>2</td>
<td>1,26</td>
<td>5,98</td>
<td>829,8</td>
<td>29,5</td>
</tr>
<tr>
<td>3</td>
<td>1,28</td>
<td>5,98</td>
<td>744,1</td>
<td>26,5</td>
</tr>
<tr>
<td>4</td>
<td>1,33</td>
<td>5,98</td>
<td>780,5</td>
<td>27,8</td>
</tr>
<tr>
<td>5</td>
<td>1,31</td>
<td>5,98</td>
<td>800,6</td>
<td>28,5</td>
</tr>
<tr>
<td>6</td>
<td>1,31</td>
<td>5,98</td>
<td>828,5</td>
<td>29,5</td>
</tr>
<tr>
<td>7</td>
<td>1,31</td>
<td>5,98</td>
<td>820,0</td>
<td>29,2</td>
</tr>
<tr>
<td>8</td>
<td>1,31</td>
<td>5,98</td>
<td>789,6</td>
<td>28,1</td>
</tr>
<tr>
<td>9</td>
<td>1,3</td>
<td>5,98</td>
<td>845,3</td>
<td>30,1</td>
</tr>
<tr>
<td>10</td>
<td>1,31</td>
<td>5,98</td>
<td>805,1</td>
<td>28,7</td>
</tr>
</tbody>
</table>

Průměr 802 29
Sm. odchylka 29 1

Výsledná pevnost v tahu u skleněných tyčí byla \(\sigma_{pt} = 29 \pm 1 \) MPa. Youngův modul pružnosti v tahu vypočítaný pomocí vztahů (12, 13) měl hodnotu \(E = 27 \pm 1 \) GPa.
Modul pružnosti byl měřen ultrazvukovou zkouščkou Tonindustrie 541. Vyhodnocení bylo provedeno podle vztahu (27) odst. 4.1.15. Hustota materiálu byla zjištěna pyknometricky a měla hodnotu 2,23 g·cm\(^{-3}\) (viz odst. 4.2.1). Výsledné hodnoty E uvádí tab. 12, ve srovnání s dále komentovanými hodnotami jiných materiálů. Všechna měření byla prováděna pětkrát.

Tabulka 12 – Výsledné hodnoty Youngova modulu pružnosti určené zkouškou ultrazvukem

<table>
<thead>
<tr>
<th></th>
<th>Sklo - koule</th>
<th>Sklo - tyče</th>
<th>Bauxit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka [m]</td>
<td>0,0100</td>
<td>0,0087</td>
<td>0,0033</td>
</tr>
<tr>
<td>Čas [s]</td>
<td>3,0 (10^6)</td>
<td>2,4 (10^6)</td>
<td>1,1 (10^6)</td>
</tr>
<tr>
<td>Hustota [kg/m(^3)]</td>
<td>2574</td>
<td>2233</td>
<td>3570</td>
</tr>
<tr>
<td>E [GPa]</td>
<td>29</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Měření tvrdosti bylo provedeno na tvrdoměru LECO LV-700L (obr. 22). U Vickersovy tvrdosti musí být uvedeno použité zatížení v kg, zde tedy 3 kg. Tab. 13 uvádí výsledky měření ve srovnání s dále komentovanými výsledky kulových vzorků.

Tabulka 13 – Tvrdoměření kulových vzorků

<table>
<thead>
<tr>
<th>Vpich číslo</th>
<th>Tvrdoměření kulových vzorků</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sklo - tyče</td>
</tr>
<tr>
<td></td>
<td>Vpich číslo</td>
</tr>
<tr>
<td>1</td>
<td>620 HV 3</td>
</tr>
<tr>
<td>2</td>
<td>550 HV 3</td>
</tr>
<tr>
<td>3</td>
<td>625 HV 3</td>
</tr>
<tr>
<td>4</td>
<td>567 HV 3</td>
</tr>
<tr>
<td>5</td>
<td>566 HV 3</td>
</tr>
<tr>
<td>6</td>
<td>574 HV 3</td>
</tr>
<tr>
<td>7</td>
<td>548 HV 3</td>
</tr>
<tr>
<td>Průměr</td>
<td>579 HV 3</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td>29</td>
</tr>
</tbody>
</table>

U vtisků nebyly pozorovány žádné radiální trhliny, místy pouze stranové (rovnoběžné s okrajem vtisku). Při zvýšení zatížení došlo ke zhroucení materiálu.

<table>
<thead>
<tr>
<th>Vpich číslo</th>
<th>Mikrotvrdost podle Vickerse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>601 HV 0,2</td>
</tr>
<tr>
<td>2</td>
<td>601 HV 0,2</td>
</tr>
<tr>
<td>3</td>
<td>601 HV 0,2</td>
</tr>
<tr>
<td>4</td>
<td>621 HV 0,2</td>
</tr>
<tr>
<td>5</td>
<td>630 HV 0,2</td>
</tr>
<tr>
<td>6</td>
<td>617 HV 0,2</td>
</tr>
<tr>
<td>7</td>
<td>601 HV 0,2</td>
</tr>
<tr>
<td>8</td>
<td>621 HV 0,2</td>
</tr>
<tr>
<td>9</td>
<td>643 HV 0,2</td>
</tr>
<tr>
<td>10</td>
<td>634 HV 0,2</td>
</tr>
<tr>
<td>11</td>
<td>617 HV 0,2</td>
</tr>
<tr>
<td>12</td>
<td>613 HV 0,2</td>
</tr>
<tr>
<td>13</td>
<td>605 HV 0,2</td>
</tr>
<tr>
<td>14</td>
<td>657 HV 0,2</td>
</tr>
<tr>
<td>15</td>
<td>643 HV 0,2</td>
</tr>
<tr>
<td>16</td>
<td>605 HV 0,2</td>
</tr>
<tr>
<td>17</td>
<td>617 HV 0,2</td>
</tr>
<tr>
<td>18</td>
<td>593 HV 0,2</td>
</tr>
<tr>
<td>19</td>
<td>609 HV 0,2</td>
</tr>
</tbody>
</table>

Průměr 617 HV 0,2

Sm. odchylka 17
Obrázek 44 – Vpich na povrchu skleněné tyče (617 HV 0,2) bez jakýchkoliv trhlin

Obrázek 45 – Vpich na povrchu skleněné tyče (605 HV 0,2) s malými stranovými trhlinami
5.2 Sklo-koule

Výsledky pevnosti v tlaku (tab. 15) byly získány na lisu a byly vyhodnoceny podle vztahu (19) z odst. 2.7.1.

Tabulka 15 – Pevnost v tlaku skleněných kouli

<table>
<thead>
<tr>
<th>Koule číslo</th>
<th>S [mm²]</th>
<th>Síla [N]</th>
<th>Pevnost v tlaku [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31,42</td>
<td>4500</td>
<td>143,2</td>
</tr>
<tr>
<td>2</td>
<td>30,43</td>
<td>4250</td>
<td>139,6</td>
</tr>
<tr>
<td>3</td>
<td>32,73</td>
<td>4750</td>
<td>145,1</td>
</tr>
<tr>
<td>4</td>
<td>35,31</td>
<td>6500</td>
<td>184,1</td>
</tr>
<tr>
<td>5</td>
<td>32,52</td>
<td>3750</td>
<td>115,3</td>
</tr>
<tr>
<td>6</td>
<td>32,93</td>
<td>3750</td>
<td>113,9</td>
</tr>
<tr>
<td>Průměr</td>
<td></td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Modul pružnosti byl měřen ultrazvukovou zkouškou Tonindustrie 541. Vyhodnocení bylo provedeno podle vztahu (27) odst. 4.1.15. Hustota materiálu byla zjištěna pyknometricky a měla hodnotu 2,57 g·cm⁻³ (viz odst. 4.2.2). Výsledné hodnoty E uvádí tab. 16, ve srovnání s dále komentovanými hodnotami jiných materiálů. Všechna měření byla provedena pětkrát.

Tabulka 16 – Výsledné hodnoty Youngova modulu pružnosti určené ultrazvukem

<table>
<thead>
<tr>
<th>Sklo - koule</th>
<th>Sklo - tyče</th>
<th>Bauxit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka [m]</td>
<td>0,0100</td>
<td>0,0087</td>
</tr>
<tr>
<td>Čas [s]</td>
<td>3.0·10⁻⁶</td>
<td>2.4·10⁻⁶</td>
</tr>
<tr>
<td>Hustota [kg/m³]</td>
<td>2574</td>
<td>2233</td>
</tr>
<tr>
<td>E [GPa]</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Měření tvrdosti bylo provedeno na tvrdoměru LECO LV-700L (obr. 22). Zatížení činilo 3 kg. Tab. 17 uvádí výsledky měření ve srovnání s výsledky tyčových vzorků.

Tabulka 17 – Tvrdoměřské měření skleněných tyčí a koulí

<table>
<thead>
<tr>
<th>Vpich číslo</th>
<th>Tvrdoměřské měření</th>
<th>Vpich číslo</th>
<th>Tvrdoměřské měření</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>620 HV 3</td>
<td>1</td>
<td>550 HV 10</td>
</tr>
<tr>
<td>2</td>
<td>550 HV 3</td>
<td>2</td>
<td>490 HV 3</td>
</tr>
<tr>
<td>3</td>
<td>625 HV 3</td>
<td>3</td>
<td>510 HV 3</td>
</tr>
<tr>
<td>4</td>
<td>567 HV 3</td>
<td>4</td>
<td>505 HV 3</td>
</tr>
<tr>
<td>5</td>
<td>566 HV 3</td>
<td>5</td>
<td>528 HV 3</td>
</tr>
<tr>
<td>6</td>
<td>574 HV 3</td>
<td>6</td>
<td>485 HV 3</td>
</tr>
<tr>
<td>7</td>
<td>548 HV 3</td>
<td>7</td>
<td>563 HV 3</td>
</tr>
<tr>
<td>Průměr</td>
<td>579 HV 3</td>
<td>Průměr</td>
<td>519 HV 3</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td>29</td>
<td>Sm. odchylka</td>
<td>27</td>
</tr>
</tbody>
</table>
Pro měření mikrotvrdosti skleněných koulí bylo použito zatížení 300 g (3 N), které se jevílo jako ideální pro získ vstupních údajů měření lomové houževnatosti. Při zatížení 200 g sice radiální trhliny vznikaly, byly ovšem velmi krátké a jejich měření by bylo zatíženo velkou chybou. Na obr. 46 je zachycen vpich při použití zátěže 300 g, kde jsou již trhliny dobře vyvinuty. Výsledné hodnoty jsou shrouny v tab. 18.

Tabulka 18 – Mikrotvrdost skleněných koulí podle Vickerse

SKLO - koule
Vpich číslo
1
2
3
4
5
6
7
8
9
10
11
12
Průměr
Sm. odchylka

Obrázek 46 – Vpich na povrchu skleněné koule (570 HV 0,3) s radiálními trhlinami
5.3 Diskuse výsledků získaných na skleněných vzorcích

Význam výsledků se liší pro oba typy vzorků z pohledu definovanosti standardních podmínek měření. V tomto smyslu jsou výchozím materiálem rozhodně tyčové vzorky. Pro zkoušku ohybových výsledků získaných na skleněných vzorcích je pro ně měření a vyhodnocení jasně definováno (v případě koulí pochopitelně zcela neměřitelné), při zkoušce v tlaku je tvar tělése rovněž standardní (v případě planparalelně vybroušených koulí je pláště válce zakřivený), při měření modulu pružnosti ultrazvukem mají oproti planparalelně zbroušeným koulím mnohem bližší charakterizaci jednorozměrného tělesa, a konečně pro zkoušku pevnosti tahem jsou v této práci jedinými použitelnými vzorky vůbec.

Zde je třeba zdůraznit, že zkouška tahem není v případě skla příliš rozšířeným způsobem testování a ze strany zkušených odborníků z oboru výzkumu skla [33] a z oboru zkoušení mechanických vlastností tahem [34] jsme od těchto experimentů byli odrazováni. Ačkoliv je materiál homogenní, dochází k problému koncentrace napětí v místě uchycení vzorku. Zopakujeme, že vzorky byly připraveny podle vzoru ze základní literatury [35] zkušeným sklařem byly důkladně vyžíhány, velmi pomalu ochlazeny a před experimentem důkladně chráněny před sebemenším mechanickým poškozením povrchu. Zřejmě i díky tomuto pečlivému postupu dopadly zkoušky tahem nad očekávání dobře. Jak je zřejmé z obr. 43, mez pevnosti materiálu sice vykazuje určitý rozptyl (relativní chyba určená ze směrodatné odchylky činí 7\% – i to je překvapivě dobrý výsledek), k destrukci (přetržení) sice docházel pod místy úchytů, nejdůležitější je však výsledek měření Youngova modulu pružnosti, E = 27 \pm 1 GPa.

Význam uvedeného výsledku nespočívá jen v charakterizaci materiálu, je důležitý také pro ověření věrohodnosti výsledků modulu pružnosti ultrazvukem. Tato zkouška poskytla výsledek 29 \pm 1 GPa a je tedy zřejmé, že se oba výsledky v rámci chyby měření shodují.

Doposud byly uváděny výhody tyčových vzorků. Nicméně, řezy kulových vzorků prokázaly výhody při měření tvrdosti a zejména mikrotvrdosti, kdy na těchto vzorcích byly vytvořeny radiální trhliny potřebné pro určení lomové houževnatosti. V případě těchto vzorků porovnáme námí dosažené výsledky s údaji dodaným dodavatelem [30]. Pro přehlednost zopakujeme v tabulce 19 část tabulky 4 z odst. 4.2.2.

<table>
<thead>
<tr>
<th>Fyzikální vlastnosti</th>
<th>Od výrobce [30]</th>
<th>Zjištěné</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifická hmotnost</td>
<td>2500 kg/m³</td>
<td>2570 kg/m³</td>
</tr>
<tr>
<td>tvrdost podle Vickerse a Rockwella</td>
<td>970 – 1018 kp/cm²</td>
<td>1130-1230 kp/cm²</td>
</tr>
<tr>
<td>modul pružnosti</td>
<td>7,75 MPa</td>
<td>???</td>
</tr>
<tr>
<td>modul pružnosti E podle Younga</td>
<td>78 – 85 GPa</td>
<td>28-30 GPa</td>
</tr>
<tr>
<td>pevnost v tlaku</td>
<td>8400 N</td>
<td>7600 N</td>
</tr>
</tbody>
</table>

V případě hustoty je tedy zřejmá shoda. V případě tvrdosti byla hodnota uvedena v nestandardních jednotkách kp/cm², pro kterou jsme použili převodní vztah 1 MPa = 2,2 kp/cm² za předpokladu, že libra p = 0,45 kg a tihové zrychlení g = 9,81 m.s⁻². V tomto

Materiál tyčí a kuliček vykazuje určité odlišnosti. Z EDS analýzy (odst. 4.2.1. a 4.2.2.) je zřejmé, že zatímco tyče jsou tvořeny téměř čistě křemičitým sklem s příslušnou sodíku a hliníku, sklo tvořící kuličky má složení komplikovanější, obsahuje také hořčík a vápník. Materiály se také výrazně liší hustotou, kdy hustota skla tyčí je o 0,3 g.cm⁻³ nižší než hustota skla kuliček. Pevnost v tuhu tyčí je velmi nízká, 29 ± 1 MPa, avšak nikoliv překvapivá. Literatura [21] zmiňuje až řádově nižší pevnost v tuhu oproti pevnosti tlaku. Diskuse konkrétních hodnot je rozvedena níže.

Pevnost v ohybu tyčí 183 ± 1 MPa byla získána s relativní chybou menší než 1 %, byla měřena za zcela standardních podmínek na vzorcích, jejíž příprava odpovídala přípravě a zacházení se vzorky pro tahovou zkoušku. Výsledek je průměrem pěti hodnot a není tedy důvod o správnosti stanovení diskutovat. Odlehlý výsledek byl vyloučen Q-testem, jeho původ vysvětluje pravděpodobným defektem tyče, který vznikl ještě před přípravou vzorku.

Pro všechny ostatní vzorky kromě tyčí bylo samozřejmě nemožné měřit pevnost v tuhu a tak jediným způsobem zjištění jejich modulu pružnosti zůstala zkouška ultrazvukem. Modul pružnosti tyčí i koulí vychází shodně, 29 ± 1 GPa. Časy průchodu ultrazvuku však byly měřeny s dostatečnou přesností 0,1 μs (kalibrace standardním ocelovým tělískem, jehož hodnota průchodu činí 2,2 μs) a správnost měření byla ověřena porovnáním s hodnotami získanými z tahových křivek. Vzhledem k celkové poofidernosti údajů výrobce koulí nemáme důvod o správnosti hodnot zpochybňovat.

Pevnost v tlaku skleněný tyčí σpd = 205 ± 23 MPa, byla vyšší než pevnost v tlaku skleněných koulí σpd = 140 ± 23 MPa, při této zkoušce je výška tělíška 8 mm, tedy 1,3 násobek průměru podstavy (v případě planparalelně vybroušených koulí je plášť válce zakřivený). Výsledné hodnoty pevností v tlaku koulí mohly být tímto zakřivením ovlivněny. Při porovnání s hodnotami uváděnými v literatuře [21] je zřejmé, že námí zjištěná pevnost v ohybu nemusí být vůbec diskutována (183 MPa vs. 40-190 MPa [21]), stejně jako pevnost v tuhu (27 MPa vs. 30-90 MPa [21]). Modul pružnosti byl stanoven mírně pod uváděným rozsahem (29 GPa vs. 50-90 GPa [21]). Markantně nižších hodnot bylo dosaženo u pevnosti v tuhu. Uváděnému rozsahu 700-1500 MPa [21] se nešlo o hodnoty nejvíce blíží v případě skleněných tyčí (205 MPa). Je třeba připustit, že se v podstatě již jedná o řádový rozdíl. Tento nesoulad vysvětluje geometrii zkušebních tělísek, kdy válec (nebo soudek) o průměru podstavy 6 mm patrně neodpovídá normovému vzorku pro čelisti o rozměrech 20x20 mm.
Tabulka 20 – Běžné hodnoty fyzikálních vlastností skel podle [21]

<table>
<thead>
<tr>
<th>vlastnost</th>
<th>jednotka</th>
<th>rozpětí hodnot</th>
</tr>
</thead>
<tbody>
<tr>
<td>hustota</td>
<td>kg·m⁻³</td>
<td>2200 - 6000</td>
</tr>
<tr>
<td>pevnost v tlaku</td>
<td>MPa</td>
<td>700 - 1500</td>
</tr>
<tr>
<td>pevnost v tahu</td>
<td>MPa</td>
<td>30 - 90</td>
</tr>
<tr>
<td>pevnost v ohybu</td>
<td>MPa</td>
<td>40 - 190</td>
</tr>
<tr>
<td>modul pružnosti</td>
<td>GPa</td>
<td>50 - 90</td>
</tr>
<tr>
<td>součinitel dělkové teplotní roztažnosti</td>
<td>K⁻¹</td>
<td>6·10⁻⁶ - 9·10⁻⁶</td>
</tr>
<tr>
<td>součinitel tepelné vodivosti</td>
<td>W·m⁻¹·K⁻¹</td>
<td>0,6 - 0,9</td>
</tr>
<tr>
<td>měrná tepelná kapacita</td>
<td>J·kg⁻¹·K⁻¹</td>
<td>850 - 1000</td>
</tr>
<tr>
<td>Poissonův součinitel</td>
<td>-</td>
<td>0,14 - 0,32</td>
</tr>
<tr>
<td>tvrdost podle Mohse</td>
<td>-</td>
<td>6 - 7</td>
</tr>
<tr>
<td>index lomu</td>
<td>-</td>
<td>1,5 - 2,25</td>
</tr>
</tbody>
</table>

Tvrdost podle Vickerse u skleněných tyčí dosáhla hodnoty 579 ± 29 HV 3 a u skleněných koulí 519 ± 27 HV 3. Měření tvrdosti podle Vickerse se ukázalo jako méně vhodné než měření mikrotvrdosti z důvodu velkých odchylek při měření. Relativně vysoká odchylka byla způsobena zhroucením struktury skla při velkém zatížení indentoru, a proto byly obrysy vpichu hůře rozpoznatelné.

Mikrotvrdost podle Vickerse u skleněných tyčí dosáhla hodnoty 617 ± 17 HV 0,2 a u skleněných koulí 568 ± 7 HV 0,3. Měřením mikrotvrdosti bylo dosaženo spolehlivějšího určení tvrdosti než při měření tvrdosti, což je dokázáno výrazně menší odchylkou měření. Výsledná hodnota mikrotvrdosti je vždy vyšší, podle literaturou běžně konstatovaného pravidla [10]: Mikrotvrdost je vždy vyšší než tvrdost (obr. 47) z důvodu možné porozity či nerovnosti povrchu materiálu, kdy při měření mikrotvrdosti se těmto oblastem lze snadno vyhnout.

Obrázek 47 – Schématický popis závislosti tvrdosti na zátěži. [10]
5.4 Vztahy mezi tvrdostí a pevností

5.4.1 Lomová houževnatost, pevnost, tvrdost a modul pružnosti

V odst. 2.4.1.2 byl komentován vztah (10), který je v literatuře [12] použit pro výpočet K_{lc} vzorků, kde byla vytvořena zárodečná trhla. Jsme si vědomi rozdílu, který tato skutečnost prezentuje, nicméně, pokusíme se o využití vztahu i pro popis chování vzorku bez trhlin. V dalších částech předkládané práce bude závislost komentována zejména s ohledem na význam exponentů mocnin a v tomto ohledu si dovolíme použít popsané zjednodušení. Základem této myšlenky je fakt, že vztah daných mocnin fyzikálních veličin existuje a geometrické aspekty vzorku budou mít vliv jen na konstanty preexponenciálních faktorů.

Zmiňovaný vztah je tedy uveden ve tvaru

$$K_{lc} \approx 0,059 \cdot \left(\frac{E}{HV} \right)^{\frac{1}{2}} \cdot \left(R_{mo} \cdot F^{\frac{1}{2}} \right)^{\frac{3}{4}} \quad (10),$$

ze kterého lze aritmetickou úpravou vyjádřit

$$R_{mo} = \sqrt{\frac{\sqrt{HV} \cdot K_{lc}^4}{F \cdot 0,059^4 \cdot \sqrt{E}}}, \quad (28),$$

ze známých hodnot uvedených veličin je tedy vypočítána průměrná pevnost v ohybu.

5.4.2 Lomová houževnatost

Pro výpočty lomové houževnatostí byly použity vpichy v skleněných koulí s výraznými radiálními trhlinami. Podle poměru c/r bylo určeno, že se jedná o Palmqvistovy trhliny (odst. 2.4.1) Lomová houževnatost pak byla vypočítána pomocí vzorce (8):

$$K_{lc} \approx 0,012 \cdot \left(\frac{c}{r} \right)^{\frac{1}{2}} \cdot \left(\frac{3E}{HV} \right)^{\frac{2}{3}} \cdot HV \cdot r^{\frac{1}{2}} \quad (8)$$

Výsledky po dosazení shrnuje 5. sloupec v tab. 21.
Pro výpočet byl použit zjištěný modul pružnosti $E = 29$ GPa. Průměrná hodnota lomové houževnatosti pro skleněný materiál koule byla $K_{Ic} = 5,6$ MPa.m$^{1/2}$.

Experimentální hodnoty pevnosti v ohybu u koulí samozřejmě nejsou dostupné. Máme však k dispozici výsledky spoletlivé údaje o pevnosti v ohybu tyčí a dále orientační hodnoty pevnosti v tlaku obou materiálů. Význam těchto hodnot by byl komentován výše, nicméně s ohledem na stejné experimentální podmínky budeme dále předpokládat, že hodnoty pevnosti v ohybu budou vykazovat přibližně stejný poměr jako hodnoty pevností v tlaku, tedy $\sigma_{pdtyče}/\sigma_{pdkoule} = \frac{140}{205} = 0,68$ a následně $\sigma_{poloule} = 125$ MPa. Pro porovnání s teoretickými výsledky tedy budeme uvažovat tuto hodnotu.

Výpočtem podle tab. 21 byla získána hodnota 54,5 MPa, která je relativně nízká. Uvažujeme-li původní účely, pro které byl tento vzorec odvozen, můžeme vyslovit domněnku, že při existenci vtisku při ohybové zkoušce bychom obdobnou hodnotu skutečně mohli získat.

Za předpokladu vzniku tzv. centrálních trhlin by byla podle [12] lomová houževnatost počítána pomocí vzorce (9):

$$K_{Ic} \approx 0,043 \cdot \left(\frac{c}{r}\right)^{-\frac{3}{2}} \cdot \left(\frac{3E}{HV}\right)^{\frac{3}{2}} \cdot HV \cdot r^{\frac{1}{2}}$$

Rozdíl je tedy v prvním faktoru (0,043) a v mocnině prvního členu. Výsledek po dosazení podle tab. 21, avšak s těmito dvěma změněnými parametry je 213 MPa. Podle [12] je základním kritériem rozlišení poměr c/r (odst. 2.4.1.). Z obr. 10 je však patrné že rozhodující je hloubka trhlin a jejich topografie v okolí vtisku. Na obr. 48 je SEM snímek jednoho vtisku námí připraveným na tvrdoměru. Je zřejmě, že způsob šíření trhlin i jejich topografie je v reálném případě mnohem složitější a popsané vztahy (8) a (9) tak považujeme za popis krajních případů, přičemž většina trhlin bude mít charakter smíšený. Skutečné hodnoty faktoru i exponentu tedy budou ležet v intervalu 0,012 až 0,043 resp. -0,5 až -1,5.
Dalším diskutabilním faktorem je zatížení při měření tvrdosti, které autor [12] při komentáři vzorců (8) a (9) vůbec nediskutuje. Jak však již bylo uvedeno (kap. 5.3., obr. 47), hodnoty změřené při vysokých zátěžích mohou poklesnout až na 50 % hodnoty zjištěné měřením mikrotvrdosti.

Námi používané zatížení při měření hodnot v tab. 21 činilo 300 g, podle grafu na obr. 47 tedy měříme ve střední části přechodové oblasti a pro ilustraci tedy uvažujme, že hodnota získaná výpočtem podle vztahu (8) a (9) se může lišit např. až o 30 %. V takovém případě by se potom výsledek změnil na 142 MPa. Tento výsledek je poměrně blízko experimentální hodnotě 125 MPa. Závěrem této diskuse tedy konstatujeme, že podle uvedených výpočtů vychází pevnost v ohybu materiálu koulí v intervalu 55 – 210 MPa, s ohledem na použitou zátěž upřesníme odhadovanou hodnotu na 140 ± 30 MPa. Při získané experimentální hodnotě 125 MPa tedy konstatujeme, že uvedené vztahy jsou přinejmenším pro popis trendů vzájemných vztahů obsažených veličin dobře použitelné.

5.5 Geopolymer 0 %

Pomocí plošné EDS analýzy při zvětšení 50× (cca 2,3 mm²) bylo dokázáno, že se u všech geopolymerů jednalo o hlinitano-křemičitanový materiál s obsahem sodíku viz obrázek 49. Atomová procenta prvků: Si – 24,0 %, Al – 3,5 %, Na – 5,1 % (ZAF aproximace).
Obrázek 49 – EDS spektrum – geopolymer 0 %

Pro měření tvrdosti byl vybrán geopolymer s nejhomogennější strukturou, proto byl použit geopolymer 0 %. U heterogenních materiálů použití tvrdosti podle Vickerse ztrácí smysl z důvodu rozložení zatížení na Vickersově jehlanu a možném zasažení různých fází. Geopolymer byl broušen v původním stavu (část trámečku) na boční straně vzhledem k umístění ve formě při tuhnutí.

Tabulka 22 – Tvrdost geopolymeru podle Vickerse

<table>
<thead>
<tr>
<th>GEOPOLYMER 0 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vpich číslo</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>Průměr</td>
</tr>
<tr>
<td>Sm. odchylka</td>
</tr>
</tbody>
</table>

U geopolymerních vzorků musel být připraven povrch, který je nezbytný pro přesné měření mikrotvrdosti podle Vickerse, zvláště u měření fázových rozhraní. Geopolymery byly broušeny za velmi nízké rychlosti otáčení brusných kotoučů, aby nedocházelo k vytrhávání plniva z matrice a aby nedocházelo k zahřívání geopolymeru, protože bylo nutné brousit bez přístupu vody (prostup vody do geopolymeru a následné odpařování způsobovali znovuvtvoření reliéfního povrchu).

U geopolymeru 0 % byly měřeny mikrotvrdoměrem pouze jednotlivé fáze (obr. 50): matrice a speciálně upravený křemen (SUK). Vpichy byly provedeny při zatížení 25 g (0,25 N). EDS spektrum plochy zrna na obr. 50 je na obr. 51. Výsledek jednoznačně (i kvantitativně) potvrdil, že se jedná o velmi čistý SiO$_2$.

Tabulka 23 – Mikrotvrnost jednotlivých fází geopolymeru 0 %

<table>
<thead>
<tr>
<th>Fáze</th>
<th>Mikrotvrnost podle Vickerse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suk</td>
<td>1102 HV 0,025</td>
</tr>
<tr>
<td>Suk</td>
<td>1048 HV 0,025</td>
</tr>
<tr>
<td>matrice</td>
<td>67,7 HV 0,025</td>
</tr>
<tr>
<td>matrice</td>
<td>72,3 HV 0,025</td>
</tr>
</tbody>
</table>

Je třeba podotknout, že ač je tento materiál (0% bauxitu) sám o sobě heterogenní (HV 0,025: 1075 pro SUK a 70 pro skutečnou matrici), bude v dalších diskusích považován za quasi-homogenní matrici. Označujeme jej tak jednak z důvodu, že bez použití SUKu není možno geopolymerní hmotu vytvořit, jednak s ohledem na rozměry částic. Rozměry částic matričního SUKu nepřesahují 63 μm (naše vlastní selekce), \(mod = 9,0 \mu m, \text{med} = 1,5 \mu m \) (obr. 38, odst. 4.2.3), zatímco rozměry všech částic bauxitu leží v intervalu 80 – 100 μm (vybraná frakce).
Obrázek 50 – Vpichy na povrchu geopolymeru 0 %: 1 – SUK (1102 HV 0,025), 2 – matrice (67,7 HV 0,025)

Obrázek 51 – EDS spektrum – plošná analýza speciálně upraveného křemene
5.6 Bauxit

Výsledky pevnosti v tlaku (tab. 24) byly získány na lisu a byly vyhodnoceny podle vztahu (19) z odst. 2.7.1.

Tabulka 24 – Pevnost v tlaku bauxitu

<table>
<thead>
<tr>
<th>Vzorek číslo</th>
<th>S [mm²]</th>
<th>Síla [N]</th>
<th>Pevnost v tlaku [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26,16</td>
<td>11500</td>
<td>439,6</td>
</tr>
<tr>
<td>2</td>
<td>17,65</td>
<td>9500</td>
<td>538,2</td>
</tr>
<tr>
<td>3</td>
<td>17,03</td>
<td>6750</td>
<td>396,4</td>
</tr>
<tr>
<td>4</td>
<td>12,14</td>
<td>6250</td>
<td>514,8</td>
</tr>
<tr>
<td>Průměr</td>
<td></td>
<td></td>
<td>472</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td></td>
<td></td>
<td>57</td>
</tr>
</tbody>
</table>

Výsledná hodnota pevnosti v tlaku bauxitu byla σₚₚ = 470 ± 60 MPa. Odchylka 60 MPa je vysoká hodnota, ale po zjištění že bauxit má téměř 10-ti násobně (tedy řádově) větší pevnost v tlaku než předchozí geopolymerní matrice, je tato hodnota odchylky zanedbatelná. Při porovnání s literárními údaji [12] (pevnost v ohybu slinutého Al₂O₃ 300-400 MPa), můžeme námí získané hodnoty považovat za důvěryhodné.

Modul pružnosti byl měřen ultrazvukovou zkouškou Tonindustrie 541. Vyhodnocení bylo provedeno podle vztahu (27) odst. 4.1.15. Hustota materiálu byla zjištěna pyknometricky a měla hodnotu 3,57 g·cm⁻³ (viz odst. 4.2.3.6). Výsledné hodnoty E uvádí *tab. 25*, ve srovnání s dále komentovanými hodnotami jiných materiálů. Všechna měření byla prováděna pětkrát.

Tabulka 25 – Výsledné hodnoty Youngova modulu pružnosti určené ultrazvukem

<table>
<thead>
<tr>
<th></th>
<th>Sklo - koule</th>
<th>Sklo - tyče</th>
<th>Bauxit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka [m]</td>
<td>0,0100</td>
<td>0,0087</td>
<td>0,0033</td>
</tr>
<tr>
<td>Čas [s]</td>
<td>3·10⁻⁶</td>
<td>2·10⁻⁶</td>
<td>1,1·10⁻⁶</td>
</tr>
<tr>
<td>Hustota [kg/m³]</td>
<td>2574</td>
<td>2233</td>
<td>3570</td>
</tr>
<tr>
<td>E [GPa]</td>
<td>29</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Pro měření mikrotvrdosti bauxitu bylo použito zatížení 10 – 200 g (0,1 – 2 N). Výsledky jsou shrnuty v *tab. 26*. Bauxit dosáhl průměrné mikrotvrdosti 1486 ± 170 HV 0,01- 0,2.
Tabulka 26 – Mikrotvrdost bauxitu

<table>
<thead>
<tr>
<th>Mikrotvrdost podle Vickerse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bauxit</td>
<td>1265</td>
</tr>
<tr>
<td>bauxit</td>
<td>1343</td>
</tr>
<tr>
<td>bauxit</td>
<td>1317</td>
</tr>
<tr>
<td>bauxit</td>
<td>1695</td>
</tr>
<tr>
<td>bauxit</td>
<td>1291</td>
</tr>
<tr>
<td>bauxit</td>
<td>1599</td>
</tr>
<tr>
<td>bauxit</td>
<td>1522</td>
</tr>
<tr>
<td>bauxit</td>
<td>1677</td>
</tr>
<tr>
<td>bauxit</td>
<td>1663</td>
</tr>
<tr>
<td>Průměr</td>
<td>1486 HV</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td>170</td>
</tr>
</tbody>
</table>

V případě tohoto měření je pozoruhodná nezávislost hodnot na použitém zatížení.

5.7 Ověření jednoduchých vztahů

U homogenního a izotropního materiálu, kterým je sklo, diskutujeme, zda platí vztahy uvedené v literatuře [3]. Ačkoliv jsou uváděny pro tvárné materiál, pro naše potřeby jsme vyzkoušeli, zda při náhradě meze kluzu σ_K plastického materiálu pevností v tlaku či ohybu skla budou nalezeny obdobné relace.

Uvedený vztah [3] konstatuje že $P_{p,pl} = c\sigma_K$, kde $c \approx 3$, průměrný tlak plastické deformace $P_{p,pl}$ a mez kluzu σ_K.

Získané hodnoty Vickersovy tvrdosti v závislosti na pevnosti v tlaku a v ohybu byly vynešeny do grafu (obr. 52 resp. 55). Je třeba podotknout, že se jedná o výsledky získané u různých materiálů, které se liší svojí homogenitou a geometrií zkušebních tělisek. Do obou závislostí byl zahrnut bod [0;0] jehož použití považujeme za logické a nevyžadující diskusi. Zároveň podotkněme, že porovnávané tvrdosti byly získány při různých zatíženích. Při rozdílnosti diskutovaných hodnot však můžeme rozdíly způsobené zatížením při měření zanedbat.

Závislost na pevnosti v tlaku byla tedy sice získána z méně spolehlivých údajů (viz diskuse 5.3.), její průběh však lze velmi dobře aproximovat přímkou s rovnicí

$$HV = 3,22 \cdot \sigma_{pl} - 19,88 \quad (29)$$

s koeficientem spolehlivosti $R^2 = 0,98$.

V grafu na obr. 53 je pro srovnání uvedena stejná závislost, avšak údaje pro tlakovou pevnost skla jsou přejaty z literatury [21]. Hodnoty ostatních materiálů byly v předešlých diskusích a porovnáních s literárními údaji přijaty za důvěryhodné a těží jsou v grafu použity námi získané hodnoty. V tomto porovnání je jednoznačně zřejmé, že požití námi získaných hodnot vede k lépe interpretovatelné závislosti.
Korelace pevnosti v tlaku a Vickersovy tvrdosti

\[y = 3.224x - 19.882 \]

\[R^2 = 0.9767 \]

\[y = 1.3838x + 108.4 \]

\[R^2 = 0.4525 \]

Obrázek 52 – Závislost tvrdosti na pevnosti v tlaku

Obrázek 53 – Závislost tvrdosti na pevnosti v tlaku (s korekcí pevnosti v tlaku skla podle literatury [21])
V rámci diskuse však připusťme, že jediný vzorek o standardní geometrii v tomto měření byl vzorek GP 0 %. Definujme tedy přímku procházející počátkem a tímto bodem (obr. 54). Vidíme, že směrnice takové přímky potvrzuje správnost literárních údajů [21] pro sklo při námi zjištěné tvrdosti (úsečka 1), pevnost v tlaku bauxitu pak vychází přibližně 1700 MPa. Pro definitivní rozhodnutí, která závislost je správná by bylo třeba získat vzorek, jehož plocha podstavy se alespoň blíží 400 mm² (viz použité trámce). V případě materiálu skla by toto zřejmě možně bylo. V případě kalcinovaného bauxitu by zřejmě nejprve bylo třeba lisovat a slinout tabletu. Vzhledem ke skutečnosti, že se jedná v podstatě o znečištěný Al₂O₃, bude třeba volit teplotu až 1800°C [21] (vyžaduje speciální pec). Dalším problémem bude měřicí zařízení, neboť námí používaný lis vyvine maximální sílu cca 320 kN. Pro předpokládanou pevnost 1700 MPa to limituje maximální rozměry vzorku. Pro válec je to průměr 15,5 mm a pro kvádr je to délka strany 13,7 mm. Plocha takového vzorku pak dosahuje pouze 188 mm², a z hlediska dosažení standardních rozměrů tedy celá procedura stejně postrádá význam. Pro spolehlivé změření pevnosti vzorku tohoto materiálu o ploše podstavy 400 mm² je třeba lisu, který bude moci působit silou nejméně 700 kN.

Teoretický odhad

![Teoretický odhad grafik](image)

Obrázek 54 – Nejedná se o interpretaci výsledků! Červeně: Jeden experimentální a jeden principiální bod (počátek), které definují přímku. Jedná se o ilustraci k diskusi korelace pevnosti tlaku a tvrdosti.

Graf závislosti tvrdosti na pevnosti v ohybu byl sice získán jen ze tří bodů (dva změřené a počátek), jde však o body z hlediska podmínek získání a statistického ověření téměř nezpochybnitelné.
Korelace pevnosti v ohybu a Vickersovy tvrdosti

\[y = 3.3705x + 0.2231 \]
\[R^2 = 1 \]

Obrázek 55 – Závislost tvrdosti na pevnosti v ohybu

Je zřejmé, že korelace těchto dvou veličin je vynikající a můžeme konstatovat, že Vickersova tvrdost je s pevností v ohybu ve vztahu

\[HV = 3.37 \cdot R_{mo} \] \hspace{1cm} (30).

Pro úplnost uvádíme i graf, kde jsou vyneseny hodnoty tvrdostí v závislosti na modulu pružnosti (*obr. 56*). Podotkněme, že se opět jedná pro hodnoty získané u zcela různých materiálů. Není tedy příliš překvapující, že žádnou popsatelnou závislost v uvedeném grafu není možno vysledovat.
5.8 Geopolymery s obsahem bauxitu 5 - 20 %

5.8.1 Charakterizace matrice, zrna a jejich rozhraní

U geopolymuru 5 % byly měřeny jednotlivé fáze i fázové přechody mezi bauxitem a matricí (viz tabulka 27, obrázek 57 a 59).

Tabulka 27 – Mikrotvrdost geopolymuru 5 % podle Vickerse

<table>
<thead>
<tr>
<th>GEOPOLYMER 5 %</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauxit - průměr</td>
<td>1486 HV 0,05</td>
<td></td>
</tr>
<tr>
<td>matrice</td>
<td>47 HV 0,05</td>
<td></td>
</tr>
<tr>
<td>matrice</td>
<td>51 HV 0,05</td>
<td></td>
</tr>
<tr>
<td>Matrice - průměr</td>
<td>49 HV 0,05</td>
<td></td>
</tr>
<tr>
<td>Fázové rozhraní 1</td>
<td>Mikrotvrdost podle Vickerse</td>
<td></td>
</tr>
<tr>
<td>bauxit</td>
<td>1663 HV 0,01</td>
<td></td>
</tr>
<tr>
<td>6 µm</td>
<td>210 HV 0,01</td>
<td></td>
</tr>
<tr>
<td>21 µm</td>
<td>130 HV 0,01</td>
<td></td>
</tr>
<tr>
<td>Fázové rozhraní 2</td>
<td>Mikrotvrdost podle Vickerse</td>
<td></td>
</tr>
<tr>
<td>bauxit</td>
<td>1522 HV 0,01</td>
<td></td>
</tr>
<tr>
<td>1 µm</td>
<td>599 HV 0,01</td>
<td></td>
</tr>
<tr>
<td>5 µm</td>
<td>196 HV 0,01</td>
<td></td>
</tr>
</tbody>
</table>
Fázový přechod 1 + 2: bauxit-matrice

![Graph showing microhardness measurement on the interface of phases bauxite - matrix.](image)

Obrázek 57 – Měření mikrotvrdosti na rozhraní fází bauxit-matrice

Při měření mikrotvrdosti u GP 5 % byla určena průměrná mikrotvrdost bauxitu 1486 ± 170 HV 0,05 a geopolymerní matrice 49 ± 2 HV 0,05. U vpichů při měření mikrotvrdosti na rozhraní fází bylo použito nejmenší dostupné zatížení 10 g (0,1 N). Jak je zřejmé z obrázku 57 hodnoty mikrotvrdosti klesají s rostoucí vzdáleností od zrna bauxitu. Křivka udávající fázové rozhraní 1 přesně nekopíruje rychlost klesání mikrotvrdosti, proto je uvedena křivka fázového rozhraní 2, která značně zpřesňuje směrnici klesání mikrotvrdosti.

Pozorovaný profil lze interpretovat pomocí fotografie vtisků (obr. 59). Z měřítka snímku je zřejmé, že plocha zrna bauxitu na výbrusu má průměr cca 40 μm, je tedy zřejmé, že při uvedené frakci (80 – 100 μm) vede rovina výbrusu zrnem tak, jak je znázorněno na obr. 58 A. Z obrázku je dále zřejmá diskuse ovlivnění vtisku povrchem. Vzhledem ke skutečnosti, že v tomto případě je vybroušená plocha oproti rozměru skutečně malá, nelze očekávat vznik asymetrie diagonál (obr. 58 B). Ve struktuře nebyla pozorována žádná přechodová vrstva a o žádné strukturní interakci bauxitu a geopolymuru nebyla nalezena zmínka ani v literatuře. Průběh mikrotvrdosti se vzdáleností od okraje zrna tedy nelze jinak interpretovat.

Obrázek 59 – Vpichy na povrchu geopolymeru 5 %. Fázové rozhraní 1: 1 – bauxit (1677 HV 0,01), 2 – bauxit (1663 HV 0,01), 3 – 6 μm (210 HV 0,01), 4 – 21 μm (130 HV 0,01). Fázové rozhraní 2: 1 – bauxit (1599 HV 0,01), 2 – bauxit (1522 HV 0,01), 3 – 1 μm (599 HV 0,01), 4 – 5 μm (196 HV 0,01).

5.8.2 Mechanické vlastnosti trámců

Výsledky měření pevnosti v ohybu po 28 dnech uvádí tabulka 28.

Tabulka 28 – 28 denní pevnost v ohybu geopolymerů

<table>
<thead>
<tr>
<th>GEOPOLYMERY</th>
<th>Pevnost v ohybu [MPa]</th>
<th>Průměr</th>
<th>Sm. odchylka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trámc</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geopolymer 0 %</td>
<td>15,4 15,0 13,0</td>
<td>14,4</td>
<td>1,1</td>
</tr>
<tr>
<td>Geopolymer 5 %</td>
<td>6,1 11,7 12,1</td>
<td>10,0</td>
<td>2,7</td>
</tr>
<tr>
<td>Geopolymer 10 %</td>
<td>10,4 6,3 11,0</td>
<td>9,2</td>
<td>2,1</td>
</tr>
<tr>
<td>Geopolymer 15 %</td>
<td>13,7 13,1 11,8</td>
<td>12,9</td>
<td>0,8</td>
</tr>
<tr>
<td>Geopolymer 20 %</td>
<td>11,2 14,8 13,7</td>
<td>13,2</td>
<td>1,5</td>
</tr>
</tbody>
</table>
Geopolymery s obsahem bauxitu vykazují klesající tendenci pevnosti v ohybu směrem od 0 % do 10 % obsahu bauxitu a rostoucí od 10 % do 20 %. Nejvyšší pevnost v ohybu vykazoval geopolymer, který neobsahoval bauxit vůbec, $\sigma_{po} = 14 \pm 1$ MPa.

Výsledky měření pevnosti v tlaku po 28 dnech uvádí tabulka 29. Dvojnásobný počet měření je umožněn tím, že po měření pevnosti v ohybu vzniknou dvě poloviny přelomených trámců, na kterých je poté provedeno měření pevnosti v tlaku.

<table>
<thead>
<tr>
<th>Trámec</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Průměr</th>
<th>Sm. odchylka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geopolymer 0 %</td>
<td>56,3</td>
<td>60,6</td>
<td>58,8</td>
<td>54,4</td>
<td>57,2</td>
<td>57,5</td>
<td>57,5</td>
<td>1,9</td>
</tr>
<tr>
<td>Geopolymer 5 %</td>
<td>50,6</td>
<td>51,9</td>
<td>47,5</td>
<td>45,6</td>
<td>49,8</td>
<td>48,6</td>
<td>49,0</td>
<td>2,1</td>
</tr>
<tr>
<td>Geopolymer 10 %</td>
<td>36,9</td>
<td>47,5</td>
<td>39,4</td>
<td>41,3</td>
<td>41,3</td>
<td>38,8</td>
<td>40,8</td>
<td>3,3</td>
</tr>
<tr>
<td>Geopolymer 15 %</td>
<td>51,9</td>
<td>50,0</td>
<td>46,9</td>
<td>46,3</td>
<td>40,0</td>
<td>50,0</td>
<td>47,5</td>
<td>3,9</td>
</tr>
<tr>
<td>Geopolymer 20 %</td>
<td>49,4</td>
<td>41,9</td>
<td>51,3</td>
<td>51,3</td>
<td>53,1</td>
<td>53,8</td>
<td>50,1</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Při měření pevnosti v tlaku vykazují geopolymery s obsahem bauxitu stejný trend průběhu pevnosti jako u měření pevnosti v ohybu. Klesající pevnost v tlaku směrem od 0 % do 10 % obsahu bauxitu a rostoucí od 10 % do 20 %. Nejvyšší pevnost v tlaku opět vykázal geopolymer, který neobsahoval bauxit $\sigma_{pd} = 58 \pm 2$ MPa.

Výsledky měření tvrdosti podle Brinella po 28 dnech uvádí tabulka 30. Označení HBW 5/62,5 znamená, že byla použita wolframová kulička o průměru 5 mm a zatížení bylo 62,5 kg.

<table>
<thead>
<tr>
<th>Trámec</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Průměr</th>
<th>Sm. odchylka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geopolymer 0 %</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>29</td>
<td>26</td>
<td>25</td>
<td>26,3</td>
<td>1,5</td>
</tr>
<tr>
<td>Geopolymer 5 %</td>
<td>22</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>24</td>
<td>24</td>
<td>24,7</td>
<td>1,7</td>
</tr>
<tr>
<td>Geopolymer 10 %</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>11</td>
<td>17</td>
<td>16</td>
<td>16,2</td>
<td>2,4</td>
</tr>
<tr>
<td>Geopolymer 15 %</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>17</td>
<td>17,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Geopolymer 20 %</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>20</td>
<td>21</td>
<td>21,0</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Geopolymery plněné bauxitem vykazují stále stejný trend hodnot mechanických vlastností. Klesající tvrdost podle Brinella směrem od 0 % do 10 % obsahu bauxitu a rostoucí od 10 % do 20 %. Nejvyšší tvrdost podle Brinella měl geopolymer, který obsahoval jako plnivo pouze SUK $26,3 \pm 1,5$ HBW 5/62,5.
5.8.3 Vliv obsahu bauxitu na mechanické vlastnosti materiálu

Geopolymery 0 až 20 % byly podrobeny mechanickému zkoušení v ohybu, tlaku a zkouškám Brinellovy tvrdosti. Brinellova tvrdost byla zvolena neboť se jedná heterogenní materiál, kde jsou heterogenity patrny již prostým okem. Z výsledných hodnot pevností byly sestaveny grafy na obr. 60 a 61.

Závislost pevnosti (v ohybu a tlaku) na obsahu bauxitu

\[
y = 0,1058x^2 - 2,4421x + 57,539 \\
R^2 = 0,8745
\]

\[
y = 0,0402x^2 - 0,7934x + 13,862 \\
R^2 = 0,7048
\]

Obrázek 60 – Vliv obsahu bauxitu v na pevnosti geopolymérů GP 0 % – GP 20 %

Závislost Brinellovy tvrdosti na obsahu bauxitu

\[
y = 0,0574x^2 - 1,5039x + 27,551 \\
R^2 = 0,7841
\]

Obrázek 61 – Vliv obsahu bauxitu v na tvrdost geopolymérů GP 0 % – GP 20 %
Všechny tři grafy vykazují zjevné minimum při 10 % náhrady SUKu bauxitem. Pozorovaný jev vysvětlujeme tak, že v první (klesající) části grafu se uplatňuje a roste význam slabého fázového rozhraní bauxit-matrice, zatímco v druhé (rostoucí) části se již uplatňuje zpevnění materiálu vlastní pevností bauxitu.

Výsledky byly proloženy polynomem druhého stupně, který vykazoval nejvyšší hodnoty koeficientu spolehlivosti R^2. Z jeho hodnot je zřejmé, že se nejedná o ideální proložení. Při pokusech o proložení dat v software OriginPro 7.5, který umožňuje tvary funkcí definovat prakticky neomezeně, byla volena trojčlenná polynomická funkce ve tvaru

$$y = ax^b + cx^d + e$$

Při iteraci s touto funkcí docházelo k vyrovnání exponentů b a d při hodnotě 1,3, zejména však nedocházelo k výraznému zlepšení koeficientu spolehlivosti. Z toho tedy plyne jednoduchý závěr, že bude třeba (např. v dalších pracích) získat více experimentálních bodů.

Při interpretaci jsme se tedy navrátili k použití polynomu druhého řádu, neboť zde dokázali alespoň částečně interpretovat význam jednotlivých členů závislosti.

Výsledné vztahy tedy obsahují dvě proměnné složky a to složku kvadratickou a lineární. Absolutní člen polynomu odpovídá hodnotě veličiny pro materiál bez bauxitu (matrice).

Složka x^2 vyjadřuje průměr částic do roviny kolmé k působící síle, neboť při všech uvedených zkouškách působí měřící zařízení na určitou plochu vzorku. Tento člen zvyšuje celkovou hodnotu veličiny, neboť s rostoucím obsahem bauxitu se zvyšuje účinný průřez tvořený tímto vysoce pevným materiálem.

Ve stejném průmětu tvoří fázové rozhraní obvod účinných ploch. Ačkoliv fázové rozhraní je samozřejmě tvořeno plochami mezi částicemi bauxitu a matrice, jedná se o nejslabší článek, který je vystaven největšímu působení (smykovému) právě v rovině kolmé k působící síle.

Obrázek 62 – Vysvětlení ovlivnění pevnosti částicemi bauxitu. A – síla působící na plochu zrna plniva (bauxit), B – síla působící na fázové rozhraní

Nejlépe by samozřejmě bylo proložení ve tvaru $y = ax^3 - bx^2 + c$, kde kubický člen odpovídá objemu zpevňujících částic a kvadratický člen odpovídá celkové ploše fázových rozhraní. Jak však již bylo uvedeno, s experimentálními daty se ani v software OriginPro 7.5 nepodařilo provést uspokojivé proložení tímto způsobem.
Výsledné závislosti tedy byly získány ve tvarech

\[
\sigma_{po} = 0,0402x^2 - 0,7934x + 13,9 \quad \text{pro pevnost v ohybu},
\]

\[
\sigma_{pd} = 0,1058x^2 - 2,4421x + 57,5 \quad \text{pro pevnost v tlaku},
\]

\[
\text{HBW } 5/62,5 = 0,0574x^2 - 1,5039x + 27,6 \quad \text{pro Brinellovu tvrdost},
\]

dkde x je obsah bauxitu (% v poměru bauxitu ku celkovému množství plniva) v geopolymeru. Přesnost výsledných rovnic by bylo možné ověřit dalšími pokusy se zvyšujícím se obsahem bauxitu.

5.9 Makroskopické zkoušky geopolymerů GP-10%FA-Na a GP-10%FA-K

Výsledky měření pevnosti v ohybu po 28 dnech uvádí tabulka 31.

<table>
<thead>
<tr>
<th>GEOPOLYMERY</th>
<th>Pevnost v ohybu [MPa]</th>
<th>Průměr</th>
<th>Sm.odchylka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trámeck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-10%FA-Na</td>
<td>7,7 8,6 8,6</td>
<td>8,3</td>
<td>0,4</td>
</tr>
<tr>
<td>GP-10%FA-K</td>
<td>6,5 6,1 6,5</td>
<td>6,4</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Geopolymery s obsahem popílku vykazují pevnosti v ohybu: \(\sigma_{po} = 8,3 \pm 0,4\) MPa pro GP-10%FA-Na a \(\sigma_{po} = 6,4 \pm 0,2\) MPa pro GP-10%FA-K.

Výsledky měření pevnosti v tlaku po 28 dnech uvádí tabulka 32.

<table>
<thead>
<tr>
<th>GEOPOLYMERY</th>
<th>Pevnost v tlaku [MPa]</th>
<th>Průměr</th>
<th>Sm.odchylka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trámeck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-10%FA-Na</td>
<td>45,6 43,1 46,9 50,6 44,4 46,3</td>
<td>46,1</td>
<td>2,4</td>
</tr>
<tr>
<td>GP-10%FA-K</td>
<td>41,3 41,9 42,5 40,6 40,6 40,6</td>
<td>41,3</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Geopolymery, kde bylo 10% SUKu nahrazeno popílkem vykazovaly větší pevnosti v tlaku než materiál kde bylo stejné (10 %) množství SUKu nahrazeno bauxitem. Při použití draselného skla byly hodnoty pevnosti v tlaku nižší než při použití sodného skla.
Výsledky měření tvrdosti podle Brinella po 28 dnech uvádí tabulka 3. Označení HBW 5/62,5 znamená, že byla použita wolframová kulička o průměru 5 mm a zatížení bylo 62,5 kg.

<table>
<thead>
<tr>
<th>GEOPOLYMERY</th>
<th>Trámeck</th>
<th>GP-10%FA-Na</th>
<th>GP-10%FA-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Životnost podle Brinella - HBW 5/62,5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>GP-10%FA-Na</td>
<td>18</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>GP-10%FA-K</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>

Geopolymery plněné popílkem vykazovaly větší tvrdost podle Brinella než geopolymer 10 % a dokonce i než geopolymer 15 %. GP-10%FA-K měl menší tvrdost podle Brinella než GP-10%FA-Na.

Uvedené výsledky potvrzují, že na rozdíl od plnění bauxitem dochází při náhradě SUKu popílkem k reakci mezi zrny popílku a matricí.

Uvažujeme nejprve možnost, že k reakci nedochází. Vzhledem k tomu, že z popílku nebyla vybrána definovaná velikostní frakce (u bauxitu 80 – 100 μm) a lze tedy očekávat, přítomnost značného množství jemnějších frakcí, což ostatně dokládá i obr. 41. Popílek tedy bude mít jistě větší měrný povrch, než použitá frakce bauxitu a tedy větší celkovou plochu fázových rozhraní. Tato rozhraní jsou při testech namáhána smytkem a snižují výslednou hodnotu pevnosti materiálu, jak bylo ukázáno v odst. 5.8. Negativní vliv fázových rozhraní na pevnost materiálu by byl tedy při stejné hmotnostní koncentraci a obdobné hustotě mnohem silnější.

Při mikrotvrdosti popílku 130 – 160 HV 0,01 ve srovnání s hodnotou bauxitu (1600 HV 0,01) navíc nelze očekávat, že by měl natolik zpevňující vliv jako bauxit a minimum diskutované v odst. 5.8.3 by patrně bylo mnohem hlubší a posunuto k vyšším obsahům popílku.

Ve skutečnosti byly hodnoty všech tří parametrů v případě vzorku Na L vyšší a v případě K L stejné. Vzhledem k popsané úvaze je tedy jasné, že na fázovém rozhraní popílek matrice patrně vzniká přechodová vrstva. Její vlastní mechanické vlastnosti nemusí být nijak výjimečné, nicméně rozhodně způsobuje vyšší pevnost fázového rozhraní než je tomu v případě systému bez reakce (bauxit/matice)

5.10 Mikrostrukturní výzkum geopolymerů GP-10%FA-Na a GP-10%FA-K

5.10.1 Geopolymer Na L

Pomocí plošné analýzy při zvětšení 25× (10 mm²) byl analyzován povrch GP-10%FA-Na (obr. 63). Z EDS spektra (obr. 64) byla zjištěna atomová procenta prvků: Si – 25,4 %, Al – 4,3 %, Na – 5,8 %, Ca – 0,5 % a Fe – 0,4 %.
Obrázek 63 – Povrch GP-10%FA-Na, který byl podroben plošné analýze prvků.

Obrázek 64 – EDS spektrum – GP-10%FA-Na na obrázku 63

Plošná EDS analýza zrna popílku (obr. 65) byla diskutována v odst. 4.2.3.7, obr. 42. Na obr. 65 je dobře patrná přechodová vrstva o tloušťce cca 40 μm lemující okraj zrna. Byla provedena prvková analýza (měření koncentračních profilů) podél trasy znázorněné na obr. 66 ve vzdálenostech od hranice zrna 3 μm, 6 μm, 12 μm, 17 μm, 25 μm, 32 μm, 37 μm a 44 μm). Jednotlivá spektra jsou uvedena v příloze.
Obrázek 65 – Zrno popílku v GP-10%FA-Na vybrané pro plošnou analýzu. Zelená úsečka udává polohu trasy (viz obr. 66) analyzy koncentračních profilů.

Obrázek 66 – Fázové rozhraní popílku s označenými místy, kde byla provedena bodová analýza prvků v GP-10%FA-Na pro zjištění koncentračních profilů. Snímek byl elektronicky pootočen.
5.10.1.1 Koncentrační profil fázového rozhraní GP-10%FA-Na

Získané koncentrační profily jsou uvedeny na obr. 67. Údaje o atomových procentech prvků byly získány ZAF aproximací, která je součástí software SEM. První bod byl z dalších diskusi vyloučen, neboť je zjevně ovlivněn sousední fází, tj. znem popílku (excitační objem). Pro lepší čitelnost grafu byl obsah Si vynesen na vedlejší osu vpravo.

Obrázek 67 – GP-10%FA-Na. Koncentrační profily prvků rozhraní z obr. 66 získané metodou ZAF-EDS.

Je třeba zmínit, že ZAF analýza je dobře kvantitativně použitelná zejména pro kovy a jejich slitiny. Problematikou jejího použití se do značné hlubokého diskuse vydal význam informaci o menších prvcích pouze kvalitativní, tedy je prokázána jejich přítomnost. Spolehlivost měření je v takovýchto materiálech na úrovni 1 – 10%. Z grafu je tedy zřejmé, že všechny prvky kromě Si, Ca, Al a Na jsou uvedeny pouze v kvalitativním významu.

Hodnoty kyslíku nebyly zobrazeny vůbec, neboť v těchto materiálech vykazují naprostou dominantu (obykle 40 – 70%) a jak je uvedeno v práci [38], pro popis systému má z různých důvodů obvykle význam spíše matoucí (hydráty, tuhé roztoky prvků v oxidích aj.). Pro popis složení systému se v těchto případech používá obvykle jen vzájemné porovnání koncentrací prvků jiných než kyslíku.

Profil koncentrace vápníku lze jednoznačně popsat jako neměnný, v případě hliníku a křemíku lze po uvedené eliminaci prvního bodu (3 μm) pozorovat mírný nárůst při posunu směrem k matrici.

Zejména však vyslovíme nejdůležitější předpoklad, a to, že oba vzorky plněné popílkem se naprosto nelišíly v ničem jiném, než v druhu použitého vodního skla. Pro porovnání rozdílů jejich mechanických vlastností jsou tedy dále důležité pouze koncentrace sodíku a draslíku.
Vzhledem k uvedeným skutečnostem je tedy opodstatněné, že koncentrace ostatních prvků postačují s přesností získanou při ZAF aproximací a jsou sledovány jen pro kontrolu, zda v daném bodě není výrazně odlišné složení oproti ostatním, což by svědčilo o zasažení nehomogenity v jinak homogenní (obr. 66) přechodové oblasti.

Naopak, pro zpřesnění hodnot koncentrací sodíku a draslíku byla využita v práci [38] úspěšně ověřená metoda dvoubodové kalibrace. Výsledné koncentrační profily lze uvažovat s přesností 0,1 at.% a jsou diskutovány později v souvislosti s profitem mikrotvrdosti.

5.10.1.2 Profil mikrotvrdosti fázového rozhraní GP-10%FA-Na

Veškerá měření byla prováděna za nejmenšího dostupného zatížení 10 g (0,1 N). Je třeba poznamenat, že za těchto podmínek jsou otisky velmi obtížně měřitelné, zaostření okrajů a přesné měření diagonál je časově velmi náročné.

Na druhou stranu, i při těchto krajních podmínkách je délka diagonál stále cca 10 – 20 μm a při nejlepší vůli nelze dosáhnout tak jemného rozdělení přechodové vrstvy jako u profilu EDS (velikost excitačního objemu cca 2 μm). Byly tedy měřeny body 0 μm (odpovídá mikrotvrdost zrna), 6 μm, 21 μm a 40 μm.

I při těchto úsecích není možné měřit profil podél jedné linie, měření tedy byla realizována tak, že byla opakovaně provedena na různých místech v okolí různých znou, avšak vždy ve stejné vzdálenosti od rozhraní znou/přechodová vrstva.

Měřením mikrotvrdosti podle Vickere na povrchu GP-10%FA-Na byla určena průměrná mikrotvrdost popílku na hodnotu 162 ± 23 HV 0,01.

V tabulce 34 jsou uvedeny jednotlivé mikrotvrdosti v závislosti na vzdálenosti od znou popílku. Vzdálenost 0 μm a k tomu příslušná hodnota HV 0,01 znamená mikrotvrdost popílku, ne tedy mikrotvrdost přímo na hranici znou s matricí. U znou číslo 2 nebyly naměřeny mikrotvrdosti v vzdálenosti při 40 μm z důvodu výskytu jiných fází (SUK, hranice jiného popílku) v této oblasti.

Pro ilustraci přesnosti, pečlivosti a ohledu na statistické zpracování jsou uvedeny následující grafy. Na obr. 68 jsou souhrnně vyneseny všechny naměřené hodnoty, barevně jsou odlišeny hodnoty získané v přechodových zónách různých znou. Na obr. 69 jsou již zprůměrovány jednotlivé hodnoty pro přechodové zóny jednotlivých znou a obr. 70 uvádí celkový průměr ze všech měření. Je tedy zřejmé, že naměřené mikrotvrdostní profily jsou reprodukovatelné.

Vtisky těsně při povrchu popílku (6 μm) jsou ilustrovány na obr. 71.
Tabulka 34 – Mikrotvrdost na jednotlivých popílkách a jejich rozhraní v GP-10%FA-Na. Barevné rozlišení přiřazuje hodnotu k souřadnici v přechodové vrstvě.

<table>
<thead>
<tr>
<th>Zrno popílku číslo 1</th>
<th>Zrno popílku číslo 2</th>
<th>Zrno popílku číslo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzdálenost [μm]</td>
<td>HV 0,01</td>
<td>Vzdálenost [μm]</td>
</tr>
<tr>
<td>0</td>
<td>175,0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>168,0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>157,0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>69,2</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>57,0</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>52,6</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>42,3</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>39,7</td>
<td>21</td>
</tr>
<tr>
<td>40</td>
<td>35,0</td>
<td>22</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obrázek 68 – Měření mikrotvrdosti GP-10%FA-Na na rozhraní fázi popílky-matrace. Všechny hodnoty.
Fázový přechod geopolymeru Na L: popílek(1,2,3)-matrice

Obrázek 69 – Průměrné mikrotvrdosti GP-10%FA-Na na rozhraní jednotlivých zrn

Fázový přechod geopolymeru Na L: popílek-matrice

Obrázek 70 – Výsledné mikrotvrdosti GP-10%FA-Na přechodové fáze popílek-matrice
Pomocí plošné analýzy při zvětšení 25× (10 mm²) byl analyzován povrch GP-10%FA-K (obr. 72). Z EDS (obr. 73) byla zjištěna atomová procenta prvků: Si – 25,1 %, Al – 4,1 %, Na – 2,6 %, K – 1,1 %, Ca – 0,9 %, Mg – 0,5 %, S – 0,3 %, P – 0,2 %, Fe – 0,2 %, Ti – 0,2 %.

Plošná EDS analýza zrna popílku (obr. 74) byla diskutována v odst. 4.2.3.7, obr. 42. Na obr. 74 je dobře patrná přechodová vrstva o tloušťce cca 40 μm lemující okraj zrna. Byla provedena prvková analýza (měření koncentračních profilů) podél trasy znázorněné na obr. 75 ve vzdálenostech od hranice zrna 3 μm, 6 μm, 12 μm, 17 μm, 25 μm, 32 μm, 37 μm a 44 μm). Jednotlivá spektra jsou uvedena v příloze.
Obrázek 72 – Povrch GP-10%FA-K, který byl podroben plošné analýze prvků.

Obrázek 73 – EDS spektrum – GP-10%FA-K na obrázku 72
Obrázek 74 – Zrno popílku v GP-10%FA-K vybrané pro plošnou analýzu. Zelená úsečka udává polohu trasy (viz obr. 75) analýzy koncentračních profilů.

Obrázek 75 – Fázové rozhraní popílku s označenými místy, kde byla provedena bodová analýza prvků v GP-10%FA-K pro zjištění koncentračních profilů. Snímek byl elektronicky pootočen.
5.10.2.1 Koncentrační profil fázového rozhraní GP-10%FA-K

Získané koncentrační profily jsou uvedeny na obr. 76. Údaje o atomových procentech prvků byly získány ZAF aproximací, která je součástí software SEM. Pro lepší čitelnost grafu byl obsah Si vynesen na vedlejší osu vpravo.

Obecný komentář ke koncentračním profilům je uveden v odst. 5.10.1.1. Ke konkrétním detailům. I zde by bylo možno vysledovat mírný trend nárůstu obsahu Si směrem k matrice. Jak bylo řečeno v uvedené diskusi 5.10.1.1, nemá význam koncentraci prvků jiných než Na a K komentovat. Graf je výsledkem ZAF aproximace a posloužil k eliminaci bodů 12 a 32 μm, kdy bylo zjevně zasaženo nepatrné zrno SUKu (výrazné maximu Si, pokles hodnot všech ostatních prvků). Naopak, tentokrát nebylo třeba eliminovat bod v pozici 3 μm (rozdíl oproti předchozímu případu GP Na L lze vysvětlit s využitím obr. 58 – situace pod povrchem výbrusu byla tentokrát zkrátka jiná. Zrna nejsou rozhodně ideálně kulová, a tak k průniku excitačního objemu povrchu zrna nedošlo).

Koncentrace Na a K byly pro další práci opět zpřesněny pomocí metody [38]. Jejich diskuse následuje v kap. 5.11.

5.10.2.2 Profil mikrotvrdosti fázového rozhraní GP-10%FA-K

Veškerá měření byla prováděna za nejmenšího dostupného zatížení 10 g (0,1 N). Výsledky tabelárně shrnuje tab. 35, graficky potom obr. 74 – 76. Měřením mikrotvrdosti podle Vickerse na povrchu GP-10%FA-K byla určena průměrná mikrotvrdost křemičito-vápenatého popílku na hodnotu 142 ± 17 HV 0,01. Diskuse podmínek a zpracování výsledků je stejná jako v odst. 5.10.1.2.
Tabulka 35 – Mikrotvrdost na jednotlivých popílech a jejich rozhraní v GP-10%FA-K. Barevné rozlišení přiřazuje hodnotu k souřadnici v přechodové vrstvě.

<table>
<thead>
<tr>
<th>Zrno popílku číslo 1</th>
<th>Zrno popílku číslo 2</th>
<th>Zrno popílku číslo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzdálenost [μm]</td>
<td>HV 0,01</td>
<td>Vzdálenost [μm]</td>
</tr>
<tr>
<td>0</td>
<td>164,0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>139,0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>49,5</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>49,0</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>47,0</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>40,0</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>39,1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>36,9</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>31,5</td>
<td></td>
</tr>
</tbody>
</table>

Fázový přechod geopolymeru K L: popílek(1,2,3)-matrice

Obrázek 77 – Měření mikrotvrdosti GP-10%FA-K na rozhraní fázi popílky-matrice. Všechny hodnoty.
Fázový přechod geopolymeru K L: popílek(1,2,3)-matrice

Vzdálenost od hranice zrna [μm]

Mikrotvrdost HV 0,01

Obrázek 78 – Průměrné mikrotvrství GP-10%FA-K na rozhraní jednotlivých zrn

Fázový přechod geopolymeru K L: popílek-matrice

Obrázek 79 – Výsledné mikrotvrství GP-10%FA-K přechodové fáze popílek-matrice
5.11 Korelace chemického složení a mechanických vlastností fázového rozhraní popílek - matrice

5.11.1 Mikrotvrdost v přechodových pásmech geopolymerů

Mikrotvrdosti naměřené v přechodových pásmech mezi popílkem a matricí geopolymeru byly vyneseny v závislosti na poloze v přechodové vrstvě (obr. 80 a 81).

Obrázek 80 – Závislost obsahu sodíku (hlavní osa y) a mikrotvrdosti (vedlejší osa y) na vzdálenosti od hranice zrna popílku v geopolymeru GP-10%FA-Na.
Jak bylo uvedeno, výsledky bodů při rozhraní jsou sporné, a tak byly z křivky mikrotvrdosti vyloučeny zcela a v případě GP-10%FA-Na i z koncentračního profilu (viz diskuse 5.10.1.1. a 5.10.2.1).

Upřesněním hodnot koncentrací metodou [38] se koncentrační profily poněkud změnily. Zde je třeba poznámenat, že správnost výsledku podle [38] byla jednoznačně prokázána diskusi poměrů iontových poloměrů. Naopak, výsledky podle neupřesněné aproximace ZAF byly při stejném porovnání jednoznačně nevyhovující [38].

Na první pohled je zřejmé, že obsah draslíku se v pozorovaném rozhraní projevuje spíše negativně, což odpovídá i makroskopickým pozorováním v kap. 5.9. Strukturně můžeme jej připisovat obecně-chemickému principu, kdy s délkou vazby klesá její pevnost. Struktura geopolymerů byla vysvětlena na obr. 18 v odst. 2.9.2 a snadno si můžeme odvědít, že náhrada hydratovaných iontů sodíku objemnějšími kationty draslíku způsobí oddálení vázaných hlinitanových a křemičitanových jednotek spojených kyslíkovým můstekem (a tedy snížení pevnosti vazeb) a přinejmenším také vznik mechanického napětí ve struktuře.
Pokusme se nyní alespoň částečně interpretovat nalezené závislosti a kvantitativní údaje.

Pro začátek připusťme, že koncentrační profil křemíku přeci jen jeví určitý trend (obr. 82) a na profily mikrotvrdosti tedy bude mít určitý vliv. Jak již však bylo uvedeno, vzhledem k celkové shodě obou vzorků kromě obsahu Na a K jej však považujeme za okrajový. K obr. 82 ještě podotkněme, že se jedná o výsledky ZAF bez upřesnění, a tak absolutní hodnoty koncentrací budou ve skutečnosti zcela jiné. Zde jde o vzájemné porovnání trendů.

Obrázek 82 – Závislost obsahu křemíku na vzdálenosti od hranice zrna popílku v GP Na L a GP K L.

Dalším a rozhodně ne zanedbatelným vlivem je skutečnost popsaná v odst. 5.8.1 (obr. 58), kdy se patrně projevuje blízkost povrchu zrna pod povrchem výbrusu. Faktem je, že na rozdíl od zrn bauxitu (80 – 100 μm) v případě popílku nemáme informaci o distribuci velikosti zrn, kromě pozorování např. na obr. 41, které ukazuje existenci jednak zrn menších než 20 μm, jednak zrn přesahujících velikost 200 μm. Na druhou stranu plochy zrn na zkoumaných výbrusech (i v případě mikrotvrdosti) měly většinou záměrně proměr 100 – 150 μm (tedy jedny z největších, viz obr. 65 a 74) a lze tedy předpokládat, že profily byly měřeny v rovinách přinejmenším velmi blízkých rovinách největšího průměru (tj. v polovině zrn). Další skutečností, která vyvrací náhodné ovlivnění takovým “skrytým povrchem zrna“ je statistické porovnání mikrotvrdostních profilů (obr. 68 – 70 a 77 – 79), kdy hodnoty byly měřeny na více zrnách ve více místech a výsledky by tedy při uvedeném ovlivnění vykazovaly jistě mnohem větší rozptyl. Dále je také nutno uvažovat, že s rostoucí vzdáleností od okraje zrna v ploše výbrusu také roste hloubka zanoření jeho skrytého povrchu a pro měření ve vzdálenosti 21 nebo 40 μm již můžeme předpokládat minimální ovlivnění.

Naprosto nezpochybnitelným důkazem vlivu poměru draslíku a sodíku je současnou skutečností, že preexponenciální faktory křivek mikrotvrdosti na obr. 80 a 81. Zatímco exponenty jsou téměř
shodné, a mohou se v nich projevovat výše uvedené vlivy (profil křemíku, skrytý povrch), pro GP-10%FA-Na má faktor hodnotu 105 a pro GP-10%FA-K má hodnotu 85. Vzhledem k výše diskutované přesnosti a spolehlivosti všech stanovení a dodržení shody podmínek přípravy materiálů se nemůže jednat o vliv ničeho jiného, než chemického složení.

Na závěr předkládáme návrh interpretace zjištěných závislostí na základě analýzy rozměrů zúčastněných veličin za předpokladu platnosti vztahu (10), jenž byl již využit a diskutován v odst. 5.4.1. I zde bude brán zřetel zejména na vztahy mezi mocninami veličin, které určují tvar zakřivení jejich grafických závislostí, zatímco absolutní hodnoty faktorů posouvají absolutní hodnoty grafů podél os závislých proměnných. V těchto faktorech se promítou i experimentální detaily, jako např. diskutované zárodečné trhliny.

Uvedený vztah byl v literatuře [12] nalezen ve tvaru

\[\frac{\sqrt{HV}}{F} = 0.59^4 \cdot \frac{E}{K_{lc}^4} \cdot R_{mo}^4 \]

ze kterého byl aritmetickými úpravami získán vztah ve tvaru

\[K_{lc} \approx 0.059 \cdot \left(\frac{E}{HV} \right)^{\frac{3}{4}} \cdot \left(R_{mo} \cdot F^{\frac{1}{6}} \right)^{\frac{3}{4}} \]

(10),

Kde HV je Vickersova tvrdost, F síla použitá při jejím měření, E je modul pružnosti, R_{mo} je pevnost v ohybu a K_{lc} je lomováhouzdevnatost. Podíl na levé straně rovnice je pro nás známou veličinou, neboť jím výsledek i sílu působící při měření mikrotvrdosti. Na základě zjištěné závislosti \(HV = 105 \cdot x^{0.2531} \), kde x je souřadnice bodu v [\(\mu m \)], můžeme vygenerovat soubor odpovídajících tvrdostí a jejich vyjádření poměrem HV^{0.5}/F, obr. 83.

Obrázek 83 – Modelová závislost odmocniny mikrotvrdosti lomené sílou vpichu na vzdálenosti od hranice zrna v geopolymeru Na L.

Nyní máme k dispozici levou stranu vztahu (31) i průběh koncentrace Na (11,218x^{0.321}, obr. 80), a jejich závislost na stejně proměnné, tedy poloze x bodu v přechodové oblasti.
Další úvaha vychází ze zjednodušení, že koncentrace Na bude ovlivňovat přednostně jen jednu z veličin (dále ji označujme A) na pravé straně vztahu (31), zatímco ostatní dvě budou brány jako konstanty, které se podílí na hodnotě preexponenciálního faktoru 104,45. Podíl \(\sqrt{\frac{HV}{F}} \) pak bude funkcí této veličiny A, která je funkce koncentrace Na a ta je funkce souřadnice x.

Úkolem je tedy převodění hodnoty x z výsledné mocninné rovnice \(y = 11,22x^{-0,321} \) na závislost \(\sqrt{\frac{HV}{F}} \) a určení pro kterou z proměnných E, \(R_{mo} \) nebo \(K_{lc} \) je odpovídající mocnina u x v grafu na obr. 83.

Uvažovanou veličinou a její jednotkou tedy mohou být:

| E, \(R_{mo} \) – [Pa] = [N/m^2] = [N . m^-2] |
| K_{lc} – [Pa/m^1/2] = [N . m^2.5] |

Dále jsme zjistili, že

\[c = f(\text{Na}) \rightarrow c \sim (x)^{-0,321}. \]

Jednotky koncentrace c jsou [kmol/m^3] = [kmol . m^{-3}].

Přesné vyjádření vztahu mezi koncentrací Na a veličinou A je pro nás zatím s disponibilními údaji bohužel nedostupné. Pro navrhovanou interpretaci však stačí třeba nalézt exponent tohoto převodního vztahu.

Pro A = E nebo \(R_{mo} \):

\[m^3 \rightarrow m^2 = m^3 \rightarrow m^2 \text{ a následně tedy} \]

\[m^{\frac{2}{3}} = m^2, \text{ exponent má tedy hodnotu } 2/3 \]

Pro A = \(K_{lc} \):

\[m^3 \rightarrow m^{2.5} = m^3 \rightarrow m^{2.5} \text{ a následně tedy} \]

\[m^{\frac{5}{6}} = m^{2.5}, \text{ exponent má tedy hodnotu } 5/6 \]

Po dosazení za c:

\[E \text{ nebo } R_{mo} \quad \sim \left(x^{-0.321} \right)^{\frac{2}{3}} \quad (32) \text{ a} \]

\[K_{lc} \quad \sim \left(x^{-0.321} \right)^{\frac{5}{6}} \quad (33) \]
Vzorec (10) určuje, jaké mocnině veličiny A je úměrný podíl $\frac{\sqrt{HV}}{F}$.
Umocníme-li těmito mocninami výše nalezené vztahy (32) a (33),

$$\text{pro } A = E: \quad \left(x^{-0.321} \right)^{2} \cdot \frac{1}{3} = x^{-0.107} \quad \text{a} \quad \frac{\sqrt{HV}}{F} \sim x^{-0.107} \quad (34)$$

$$\text{pro } A = R_{mo}: \quad \left(x^{-0.321} \right)^{2} \cdot \frac{5}{3} = x^{-0.642} \quad \text{a} \quad \frac{\sqrt{HV}}{F} \sim x^{-0.642} \quad (35)$$

$$\text{pro } A = K_{lc}: \quad \left(x^{-0.321} \right)^{5} \cdot \frac{4}{6} = x^{1.07} \quad \text{a} \quad \frac{\sqrt{HV}}{F} \sim x^{1.070} \quad (36)$$

Výsledkem směrnice pro K_{lc} vyšlo $x^{1.07}$, což by odpovídalo stoupající tendenci mikrotvrdrostí a tuto veličinu tedy můžeme vyločit. Pro pevnost v ohybu R_{mo} odpovídala hodnota $x^{-0.642}$, která již sice nasvědčuje klesající tendenci, ale o velmi strmém průběhu.

Po porovnání experimentální závislosti

$$\frac{\sqrt{HV}}{F} = 104.5 \cdot x^{-0.1265}$$

s relacemi (34) – (36) můžeme vyslovit závěr, že veličinou A, kterou ovlivňuje koncentrace sodíku je Youngův modul pružnosti E.

Výpočet u geopolymeru K_{L} probíhal stejným postupem a lze dosáhnout stejného výsledku jako u geopolymeru $Na L$, a to že určující pro klesající tendenci mikrotvrdrostí je Youngův modul E.

Pro porovnání obou materiálů použijme tedy následující dvě rovnice:

$$\frac{\sqrt{HV}}{F} = 105 \cdot x^{-0.13} \quad \text{pro geopolymer } Na L\ a$$

$$\frac{\sqrt{HV}}{F} = 94 \cdot x^{-0.14} \quad \text{pro geopolymer } K_{L}\ a$$

Mocnina obou vzťahů se neliší a je tedy zřejmé, že Youngův modul pružnosti závisí jen na koncentraci alkalických kationtů, nikoliv na jejich druhu (stálý objem zaujímaný alkáliemi je konstantní, jednotlivé koncentrace jsou dány poměrem iontových poloměrů, jak bylo ukázáno v práci [38]).

Výsledkem našich úvah a předpokladů potom je, že v preexponenčních faktorech jsou zahrnuty hodnoty K_{lc} a R_{mo}. Geopolymer K_{L} dosáhl hodnoty 94, oproti 104,5 u geopolymeru $Na L$. Výsledné vztahy tak odpovídají všem popsaným pozorováním, kdy geopolymer $Na L$ vykazoval všeobecně vyšší pevnosti v ohybu i tlaku, než geopolymer K_{L}.

Uvedená rozměrová analýza je samozřejmě jen další možnou diskusi získaných výsledků. Jsme si plně vědomi možností, že se ve vztažích mohou vyskytovat další faktory a zřejmě bude nezanedbatelný i vliv výše uvedených jevů (koncentrace Si a skrytý povrch zrna).
Jedním z cílů diplomové práce bylo zjištění mechanických vlastností a realizace indentačních měření homogenních a heterogenních materiálů. Výsledné hodnoty jsou uvedeny v tabulce 36.

Tabulka 36 – Souhrn mechanických vlastností měřených materiálů

<table>
<thead>
<tr>
<th>Materiál</th>
<th>(\sigma_{po} [\text{MPa}])</th>
<th>(\sigma_{pd} [\text{MPa}])</th>
<th>HBW 5/62,5</th>
<th>Tvrdomír</th>
<th>Mikrotvrdomír</th>
<th>(E_{ultrazvuk} [\text{GPa}])</th>
<th>(E_{tah.křivka} [\text{GPa}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sklo - koule</td>
<td>-</td>
<td>140 ± 23</td>
<td>-</td>
<td>519 ± 27</td>
<td>568 ± 7</td>
<td>29 ± 1</td>
<td>-</td>
</tr>
<tr>
<td>Sklo - tyče</td>
<td>183 ± 1</td>
<td>205 ± 23</td>
<td>-</td>
<td>579 ± 29</td>
<td>617 ± 17</td>
<td>29 ± 1</td>
<td>27 ± 1 *</td>
</tr>
<tr>
<td>GP 0 %</td>
<td>14 ± 1</td>
<td>58 ± 2</td>
<td>26 ± 1</td>
<td>35 ± 8</td>
<td>vice fází **</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GP 5 %</td>
<td>10 ± 3</td>
<td>49 ± 2</td>
<td>25 ± 2</td>
<td>-</td>
<td>vice fází **</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GP 10 %</td>
<td>9 ± 2</td>
<td>41 ± 3</td>
<td>16 ± 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GP 15 %</td>
<td>13 ± 1</td>
<td>48 ± 4</td>
<td>18 ± 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GP 20 %</td>
<td>13 ± 2</td>
<td>50 ± 4</td>
<td>21 ± 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GP Na L</td>
<td>8,3 ± 0,4</td>
<td>46 ± 2</td>
<td>18 ± 1</td>
<td>-</td>
<td>vice fází **</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GP K L</td>
<td>6,4 ± 0,2</td>
<td>41 ± 1</td>
<td>18 ± 1</td>
<td>-</td>
<td>vice fází **</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Výsledek získán při měření pevnosti v tahu, byla zjištěna hodnota \(R_m = 29 \pm 1\) MPa.
** Viz diskuse v příslušných kapitolách.

Byla nashromážděna obrovská základna experimentálních údajů při využití širokého spektra charakterizačních metod.

Použité suroviny a materiály byly řádně charakterizovány z hlediska významných vlastností (chemické složení, základní mechanické vlastnosti, granulometrie). U všech těchto látek byl zjištěn zdroj a zjištěné vlastnosti byly konfrontovány s údaji nalezenými v odborné literatuře.

Existence převodních vztahů a ověření použitelnosti jednotlivých metod bylo provedeno na izotropním homogenním materiálu – byly použity dva druhy skla. Nejvíce diskutabilní byla metoda měření pevnosti v tlaku, zejména s ohledem na geometrii vzorků. V příslušné kapitole byl výsledkem diskuse návrh experimentu pro rozhodnutí, která verze převodního vztahu s Vickersovou tvrdostí je správná. Je navrhována příprava tablet slinutých (1800 °C) z kalcinovaného bauxitu. Pro měření bude třeba lisu vyvíjející zatížení 700 kN.

Vztah mezi Vickersovou tvrdostí a pevností v ohybu byl nalezen a ověřen. Tento vztah dobře odpovídá předpokladům literatury [3], která však uvažovala dobře tvárné kovové materiály. Bylo však prokázáno, že za podmínky homogenity lze vztah dobře použít pro anorganické nekovové materiály s konstantou a má tedy tvar HV = 3,37 . \(R_{mo}\).

S využitím tyčových vzorků byl úspěšně proveden experiment měření pevnosti v tahu. Směrnice tahových křivek, představující Youngův modul pružnosti, umožnily ověření správnosti hodnot získaných ultrazvukovou metodou.

Byly ověřeny možnosti výpočtu lomové houževnatosti z měření radiálních trhlin vtisků po měření mikrotvrdomíru. Pro jejich ověření navrhujeme pro další práce zdokonalit charakterizaci trhlin. Současný stav uvažuje mezní případy, mělké trhliny Palmqvistovy a hluboké trhliny centrální. Těmto mezin přisuzuje exponenty a koeficienty převodních vztahů lomové houževnatosti. Z naší práce je zřejmé, že charakter trhlin může být smíšený, což následně

92

6 ZÁVĚR
ovlivní parametry uvedených vztahů. Ze získaných hodnot lomové houževnatosti byla
ověřena použitelnost vztahu mezi touto veličinou, tvrdostí a pevností v ohybu pro hladké
vzorky, která byla definována v [12] pro vzorky se zárodečnými trhlinami.

V experimentech s geopolymerním materiálem s náhradou SUKu kalcinovaným bauxitem
byla nalezena závislost na stupni plnění, vykazující minimum při náhradě 10 % SUKu.
Získaná křivka byla proložena polynomem druhého stupně, kdy bylo prokázáno, že do
určitého stupně plnění převládá vliv slabých fázových rozhraní, později však převládá
zpevnění díky rostoucímu objemu vysokopevnostní výztuže. Byla rovněž demonstrována a
vysvětlena rizika měření mikrotvrdostních profilů na výbrusech těchto materiálů (zejména
skrytý povrch).

Na vzorcích geopolymerních materiálů plněných popílkem byla prokázána existence
přechodových vrstev (cca 40 μm) mezi zrny popílku a geopolymerní matricí a byl prokázán
její pozitivní vliv na mechanické vlastnosti v porovnání s použitím plniva bez reakce
(bauxitu). Přechodové vrstvy byly popsány z hlediska prvkového složení pomocí dvoubodově
kalibrované EDS analýzy s přesností 0,1 at.% a byly získány mikrotvrdostní profily. Byl
jednoznačně prokázán negativní vliv přítomnosti draslíku na pevnost přechodové vrstvy i
makroskopických trámců. Diskutována byla možnost vlivu koncentrace iontů alkalických
kovů na modul pružnosti přechodové vrstvy, jakož i možnost ovlivnění výsledku vlivem
skrytého povrchu zrna a změn obsahu křemíku.

Pro definitivní potvrzení nebo vyvrácení navržených vysvětlení byly podány návrhy
konkrétních experimentů. V případě ověření vlivu koncentračních profilů se jako jednoznačné
řešení jeví použití tzv. nanoindentačních měření ve spojení s technikou AFM. Výhodou této
metody není jen velikost vtisku (submikronová), ale též možnost přímého měření modulu
pružnosti a plastické deformace.

Všechny výsledky byly získávány s využitím statistických metod (směrodatné odchylky, Q-
test, aj.) na základě nejméně tří, obvykle desíti a místy až dvaceti experimentálních výsledků.

V konfrontaci tohoto závěru se zadáním diplomové práce je zřejmé, že vytýčené cíle práce
byly dosaženy a splněny v plném rozsahu.
7 SEZNAM POUŽITÝCH ZDROJŮ

[33] Prof. Ing. Josef Matoušek, DrSc., VŠCHT v Praze, ústní sdělení.

[34] Ing. Josef Zapletal, VUT v Brně, ústní sdělení.

8 SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ

HM – Mohsova tvrdost
HV – Vickersova tvrdost
HBS – měření tvrdosti dle Brinella (indentor = ocelová kulička)
HBW – měření tvrdosti dle Brinella (indentor = wolframová kulička)
HRC – měření tvrdosti dle Rockwella (indentor = diamantový kužel)
SH – měření tvrdosti dle Shoreho (indentor = ocelový hrot)
ITZ – interfaciální přechodové pásmo
GGBS – granulovaná vysokopecní struska
XRD – X–ray difrakce
SEM – scanning electron microscope (skenovací elektronová mikroskopie)
AFM – atomic force microscopy (mikroskopie atomárních sil)
CH – Ca(OH)₂
FA – popílek
HSS – vysokopecvnostní ocel
BSE – detektor odražených elektronů
RFA – rentgenová fázová analýza
MK – metakaolin
SUK – speciálně upravený křemen
EDS – energiově dispersní analýza
ZAF – bezstandardová metoda kvantifikace EDS spektar uvažující rozdíly protonového čísla, absorpce a florescence jednotlivých prvků
GP – geopolymer
Geopolymer Na L = GP-10%FA-Na – geopolymer připravený se sodním sklem a popílkem z Ledvic
Geopolymer K L = GP-10%FA-K – geopolymer připravený s draselným sklem a popílkem z Ledvic
σpo, Rmo – pevnost v ohybu
σpd – pevnost v tlaku
m – hmotnost
g – gravitační zrychlení
l – vzdálenost podpěr
d – průměr
S – plocha
F – síla
E – Youngův model pružnosti
σK – mez kluzu
Klc – lomová houževnatost
c – délka Palmqvistovy trhliny
r – poloviční délka úhlopříčky vtisku
med – medián
mod – modus
9 PŘÍLOHA

EDS bodová analýza 2,7 μm od hranice zrna popílku na obr. 65 (GP-10%FA-Na)

EDS bodová analýza 6 μm od hranice zrna popílku na obr. 65 (GP-10%FA-Na)
EDS bodová analýza 25 μm od hranice zrna popílku na obr. 65 (GP-10%FA-Na)

EDS bodová analýza 37 μm od hranice zrna popílku na obr. 65 (GP-10%FA-Na)
EDS bodová analýza 2,7 μm od hranice zrna popílku na obr. 74 (GP-10%FA-K)

EDS bodová analýza 6 μm od hranice zrna popílku na obr. 74 (GP-10%FA-K)
EDS bodová analýza 25 μm od hranice zrna popílku na obr. 74 (GP-10%FA-K)

EDS bodová analýza 37 μm od hranice zrna popílku na obr. 74 (GP-10%FA-K)