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Abstract: The revolutionary sequencing technology introduced by Oxford Nanopore Technologies 
– MinION holds a great promise in the field of metagenomics due to its low cost, produced long 
reads and small size, which makes it available also for field work. The only problem preventing 
this technology from reaching its full potential is the lack of available computational tools for han-
dling the produced data. Here we present an algorithm for processing of the raw signal sequences 
generated by nanopore sequencing for metagenomic purposes allowing to remove viral sequences 
from a contaminated metagenomic sample. 
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1. INTRODUCTION 

According to estimations the whole prokaryotes group consists of almost 108 separate genospecies 
[1], however, only about 7,000 whole genome sequences are known up to date [2]. Furthermore, 
the number of microbial organisms inhabiting a human body exceeds the number of the own hu-
man cells by 10-fold [3]. We can see from these numbers that microbial organisms play a major 
role in our lives and their study is essential for further progress not only in human health, where 
there have been already found a connection between human microbiome and diseases like cancer, 
inflammatory bowel disease or diabetes; but also in industrial development. Due to the fact that the 
majority of the microorganisms are uncultivable, the study of entire microbial communities was not 
possible in the past. The change came with the emergence of next generation sequencing (NGS) 
techniques, which enabled the uprise to one of many “omics” – metagenomics. Metagenomics 
deals with directs sequencing and analysis of all genomic material present within an environment 
such as human mouth, gut, skin or environments like marine water, forests, soil, etc. Compared to 
only two metagenomic projects published in 2006, there are currently thousands metagenomic pro-
jects producing gigabytes or even terabytes of data [4]. Therefore the major problem has shifted 
from the data collection to development of fast and reliable bioinformatic tools for interpretation of 
this enormous amount of data [5].  

One of the major problems in metagenomics is to derive the taxonomic composition of the envi-
ronmental sample. This is due to the fact that current sequencers are not able to sequence whole 
genomes, but only their short fragments. Therefore the output of whole metagenome shotgun 
(WMS) sequencing can be interpreted by analogy to puzzle pieces belonging to different puzzle 
sets, for which we do not have the template pictures. There are two approaches to how to solve the 
problem: taxonomy dependent, where each fragment is compared to a reference database with ge-
nomic sequences; and taxonomy independent, which separates the fragments into distinct clusters 
based on features extracted from these fragments followed by use of a suitable clustering algo-
rithm. The first mentioned is an older approach, which has two major disadvantages: (i) it is based 
on computationally demanding alignment algorithms like BLAST, (ii) as mentioned before the 
fraction of sequenced genomes is so low, that the majority of fragments either end up unassigned or 
classified as false positives [6]. Therefore the current trend is the development of taxonomy inde-
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pendent tools. These tools can be divided into three categories based on the features extracted from 
the character DNA sequences: (i) methods based on extraction of k-mer frequencies, (ii) methods 
utilizing genome coverage after prior de novo assembly, and (iii) methods combining both features 
[7]. These methods, however, often fail due to insufficient fragment lengths. The major break-
through is expected from the third generation sequencing (TGS) technologies, which produce much 
longer fragments (compared to tens or maximum hundreds of bp – (base pairs) produced by NGS, 
the TGS is able to produce sequences thousands bp in length). One of the TGS technologies is na-
nopore sequencing from company Oxford Nanopore Technologies, which has been commercially 
available since 2014 [7]. The nanopore technology is based on passage of DNA molecule through a 
nanopore which results in change of ion current. Its full potential in metagenomic studies is, how-
ever, hampered by lack of available tools for processing of the produced signals. Here we present a 
novel taxonomy independent method for preprocessing of metagenomic data obtained by nanopore 
sequencing [9].  

2. MATERIALS AND METHODS 

2.1. TESTING DATASET 

The data produced by nanopore sequencing are FAST5 files, which are fundamentally HDF5 files. 
HDF5 files are binary files organized in a hierarchical system, able to store a wide variety of data 
files within one single file. The FAST5 file is therefore able to store the information about the sig-
nal produced during the sequencing run along with the translated character sequence and parame-
ters used for the basecalling (obtaining the character sequence from the raw signal). The ion current 
signal is not stored in the FAST5 file in its raw form, but needs to be reconstructed based on the in-
formation provided about each event (mean value, standard deviation, and duration of the event). 
Unfortunately, there are currently only few nanopore sequencing datasets publicly available. For 
our testing, we used a dataset obtained from European Nucleotide Archive (ENA) under study ac-
cession number PRJEB8716 (https://www.ebi.ac.uk/ena/data/view/PRJEB8716). This dataset com-
prises of four sequenced species: Escherichia coli, Microcystis aeruginosa, Pseudomonas fluo-
rescens, and Synechococcus elongatus simulating a simple metagenome. We used only the single-
species culture data without the simulated metagenome, in order to be able to label the fragments 
according to the organism they belong to. Since metagenome can be often contaminated by a viral 
DNA, we also downloaded Zika virus FAST5 filers from ZIBRA project 
(http://www.zibraproject.org/data/) under the barcode number NB01. The demonstration of short 
reconstructed signals for each species is shown in Figure 1. 

 

Figure 1 Short demonstrations of reconstructed signal sequences for all of the species used in 
the study. The color coding corresponds to the color coding used further in the text. 
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2.2. FEATURE EXTRACTION 

It is possible to see from Figure 1, that the signals are species specific (especially the Zika virus se-
quence exhibits a significantly different pattern), however, it would be a cumbersome work to sepa-
rate these manually. Therefore three specific features called Hjorth descriptors are extracted from 
each signal. These features are namely activity, mobility and complexity and can be computed ac-
cording to equations (1) – (3) respectively. In these equations σ0

2, σ1
2, and σ2

2 are the variances of 
the signal and its first and second derivatives. Hjorth descriptors are commonly used in EEG analy-
sis and their major advantage is that they can be computed in linear time [10]. Furthermore, since 
there are three of the descriptors, they enable visualization of a signal sequence in 3D space in form 
of a point, where each coordinate represents one of the descriptors. 
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2.3. CLUSTERING AND STATISTICS 

Two clustering techniques were used in this study. First k-means clustering algorithm was applied 
on the data containing fragments from both the simulated metagenome and the virus. Since the 
purpose of this first round of clustering is to detect and remove the viral sequences, the k represent-
ing the number of clusters was set to two – one cluster for viral sequences and the other one for the 
bacterial sequences. The second round of clustering, after removal of the viral sequences, was per-
formed by use of Expectation Maximization of Gaussian Mixture (EMGM) clustering technique. 
The aim of this second round of clustering was to separate the metagenomic sequences into clusters 
based on the organism they originate from. Both clustering performances were evaluated in terms 
of sensitivity (sensitivity = TP/(TP+FN)), specificity (specificity = TN/(TN+FP)), precision (preci-
sion = TP/(TP+FP)), and accuracy (accuracy = (TP+TN)/(TP+FP+TN+FN)).  

2.4. SIGNAL PREPROCESSING 

After removal of viral sequences, the metagenomic sequences formed a very narrow cluster in the 
resulting 3D space. Such formation is caused due to the presence of strong low-frequency compo-
nent in the data and is not very suitable for application of the EMGM algorithm. Therefore, we 
normalized the space by application of a high pass filter. In this study, we used a 34th-order win-
dow-based high pass FIR filter with Hamming window and the cutoff frequency being set to 
0.1 π rad/sample of normalized frequency [11].  

3. RESULTS AND DISCUSSION 

After we reconstructed the signals from the FAST5 files, we extracted the Hjorth descriptors from 
these signals, which allowed us visualization of the whole dataset, as shown in Figure 2a. We can 
see from this figure that the sequences from the Zika virus form a very distinct cluster from the 
other sequences, therefore can be easily detected by application of simple k-means clustering and 
then automatically filtered from the dataset. We can see in the Table 1 that all of the followed per-
formance parameters of the k-means clustering reached 100%, thus what we are left with after the 
filtering are purely bacterial sequences. These, however, form a very narrow cluster in the 3D 
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space, which we corrected by use of high pass filter on the signal sequences before the extraction of 
Hjorth descriptors, the result is shown in Figure 2b. Here we can see, that even though the bacterial 
sequences tend to form clusters in the 3D space based on the organism they originate from, these 
clusters are not as distinct as the two ones from the Figure 2a, therefore we need to use a different 
clustering algorithm. This is why we used EMGM algorithm in the second round of clustering and 
the performance parameters are shown in Table 2.  These results are not as satisfactory as the ones 
obtained in the in the first round of clustering, especially the low abundant species (S. elongatus) 
tend to fail. Improvement in these statistics could be brought by use of signals obtained by a newer 
chemistry used for nanopore sequencing and by use of more advanced signal processing tech-
niques, which are both our aims in the follow up studies. 
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Figure 2 Visualization of the dataset by use of Hjorth descriptors extracted from the signal se-
quences, where each point stands for one sequence with coordinates represented by the three de-
scriptors. In a) the whole dataset comprising of simulated metagenome and the viral sequences is 
visualized, whereas in b) the viral sequences have been filtered out from the data and signals were 

filtered by use of high pass filter before the computation of the descriptors. 

Table 1 Statistics for the k-means clustering used for detection of the viral sequences 

class sensitivity specificity precision accuracy 

Simulated metagenome 100.00 100.00 100.00 100.00 
Zika virus 100.00 100.00 100.00 100.00 

Table 2 Statistics for the EMGM clustering used for binning of the metagenomic sequences 

organism sensitivity specificity precision accuracy 

E. coli 54.36 67.38 53.24 62.09 
M. aeruginosa 31.04 85.51 59.40 63.40 
P. fluorescens 66.24 88.72 73.65 81.48 

S.elongatus 11.21 93.01 43.30 66.64 
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CONCLUSION 

A new method for processing of metagenomic data obtained by nanopore sequencing has been in-
troduced in this paper. This technique allows to reliably filter out the unwanted viral sequences 
from a metagenomic sample. The uniqueness of the suggested approach is that it works straight 
with the signal sequences produced by the nanopore sequencing run without the need for previous 
basecalling, moreover the suggested features can be extracted in linear computational time, and 
therefore the data processing is rather fast. Since the viral sequences exhibit such a strong pattern it 
would be possible to distinguish the viral sequence even from a shorter segment. This could be par-
ticularly useful in combination with already existing software Read Until, which excludes unwant-
ed sequences straight from the sequencing run in the real time. Furthermore, the method could also 
be very useful in detection of phages (viruses, who incorporate their DNA into a bacterial DNA) 
within a bacterial genome. Our method is the first to our knowledge, to process the raw nanopore 
signals for metagenomic purposes.  
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