ZDROJ PŘESNÉHO KMITOČTU
PRECISE FREQUENCY GENERATOR

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE
AUTHOR
Martin Kopečný

VEDOUCÍ PRÁCE
SUPERVISOR
prof. Dr. Ing. Zdeněk Kolka

BRNO, 2009
Bakalářská práce

Student: Martin Kopečný
Ročník: 3
ID: 78090
Akademický rok: 2008/2009

NÁZEV TÉMATU:

Zdroj přesného kmitočtu

POKYNY PRO VYPRACOVÁNÍ:

Popište možnosti využití radiových služeb (např. DCF, GPS) jako zdroje referenčního signálu pro měření. Cílem je generovat synchronní hodinový kmitočet ve dvou místech vzdálených cca 1km.

Pro vybranou variantu navrhněte obvodové řešení a plošný spoj. Zařízení realizujte a ověřte základní vlastnosti.

DOPORUČENÁ LITERATURA:


Termín zadání: 9.2.2009

Termín odevzdání: 5.6.2009

Vedoucí práce: prof. Dr. Ing. Zdeněk Kolka

prof. Dr. Ing. Zbyněk Raida

Předseda oborové rady

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.
Prohlášení

Prohlašuji, že svou bakalářskou práci na téma Zdroj přesného kmitočtu jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

V Brně dne 5. června 2009

podpis autora

Poděkování

Děkuji vedoucímu bakalářské práce prof. Dr. Ing. Zdeňku Kolkovi za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské práce.

V Brně dne 5. června 2009

podpis autora
Abstrakt

Bakalářská práce se zabývá popisem příjmu časového normálu DCF77. Tento signál je využitý jako zdroj referenčního signálu pro synchronizaci navrhovaného Zdroje přesného kmitočtu a tím zajišťuje jeho vysokou dlouhodobou přesnost výstupního kmitočtu. Zdroj kmitočtu slouží k měření. Zařízení generuje nezávisle na sobě synchronní hodinový kmitočet ve dvou místech vzdálených cca 1km.

Abstract

This bachelor thesis is aimed at design and realization a Precise frequency generator. Generator making use radio service DCF77 as a source of referencial signal for synchronization. Synchronization with DCF signal warrants to generator high long time precision of output frequency. Generator is used to measurement. This device generate synchronous clock frequency in two places which are independent and remote each other about 1km.

Klíčová slova

Zdroj přesného kmitočtu, vysílač DCF, detekce signálu, klíčování fáze, pseudonáhodnou sekvencí, dekódování signálu, anténní předzesílovač, přímozesílující přijímač.

Keywords

Precise frequency generator, DCF transmitter, signal detection, phase shift keying, signal decoding, antenna preamplifier, directly – amplifying receiver.

Bibliografická citace

Obsah

1 Úvod ..............................................................................................................................................6
2 Popis vysílače DCF77 a možností jeho využití .................................................................7
   2.1 Obecný úvod k vysílači ....................................................................................................7
   2.2 DCF77 jako zdroj časové informace ........................................................................7
   2.3 Technické parametry vysílače DCF77 ......................................................................7
   2.4 Dosah vysílače DCF77 ...............................................................................................7
   2.5 Časový kód vysílače DCF77 ........................................................................................9
   2.6 Klíčování fáze DCF77 nosné pseudonáhodnou sekvencí ......................................9
   2.7 Frekvenční spektrum signálu DCF77 ........................................................................11
   2.8 Detekce signálu a poměr S/N ...............................................................................12
   2.9 Dekódování signálu ......................................................................................................13
   2.10 Směrování antény přijímačů DCF ........................................................................14
   2.11 Budoucnost vysílače DCF77 ...................................................................................15
3 Realizace zařízení ........................................................................................................................15
   3.1 Blokové schéma kompletního zařízení: ..............................................................15
   3.2 Anténní předzesilovač ..............................................................................................15
   3.3 Přímozesilující přijímač ...........................................................................................17
      3.3.1 Přijímače s analogovým zpracováním signálů ........................................17
      3.3.2 Popis integrovaného obvodu A244D .........................................................17
      3.3.3 Popis operačního zesilovače MC33502P ...............................................19
      3.3.4 Popis přijímače DCF77 ...........................................................................20
      3.3.5 Ověření základních parametrů přijímače ........................................26
4 Závěr ............................................................................................................................................28
5 Seznam použité literatury a zdrojů .................................................................................29
6 Seznam použitých zkratek ..................................................................................................29
7 Seznam obrázků, tabulek a příloh .....................................................................................30
8 Přílohy .........................................................................................................................................31
1 Úvod

Semestrální projekt na téma Zdroj přesného kmitočtu se v prvním semestru zaobíral obecným popisem možností využití volně přístupných radiových služeb (DCF, GPS) jako zdroje referenčního signálu pro měření s cílem generování synchronního hodinového kmitočtu 1kHz ve dvou místech vzdálených cca 1km. Ve druhém semestru se navazující bakalářská práce věnuje konkrétnímu návrhu jednotlivých částí zdroje kmitočtu.

Ve světě existuje velké množství vysílačů, které vysílají přesné frekvence (někdy spojené s údajem o přesném čase), určené například pro leteckou navigaci, meteorologické ústavy, případně i pro komerční využití (přesné hodiny). Stabilita frekvence těchto oscilátorů je řízená velmi přesnými frekvenčními normami (ne-li přímo normálem pro danou krajinu). V minulosti existoval vysílač normálové frekvence i na území České republiky, konkrétně v Praze, s názvem OMA na kmitočtu 50kHz, jeho provoz však byl v roce 1995 ukončen.

V dnešní době hrají přesné a stabilní časové údaje důležitou roli. Můžeme zde vyjmenovat například požadovanou přesnost rádiových a televizních informací o čase, přesnost nosných frekvencí v telefonních komunikacích a při TV vysílání. Mezi prvními v uplatnění frekvenčních normálů bylo v námořní navigaci. Přesnost určení pozice roste s přesností informace o čase. V dnešní době se lze polohu zjistit pomocí satelitní navigace (GPS) s přesností až na několik metrů. Tento systém, který byl původně určen pro vojenské účely, je použitelný v mnoha směrech jako je letecká navigace, námořní doprava, v automobilovém průmyslu a v poslední době také v cyklistice a turistice.

Systém GPS lze také použít za účelem generování normálových frekvencí, ale z důvodu jeho finanční náročnosti a komplikovanější proveditelnosti v laboratorních podmínkách jsem se rozhodl přiklonit k variantě a použití časového normálu DCF77.

Také vzhledem ke geografické poloze České republiky se ukazuje jako výhodné použít přijem vysílače DCF77. Normálová frekvence 77.5kHz se neodchyluje od jmenovité hodnoty více než 10⁻¹² týdně. Takovéto přesnosti po příjmu a zpracování není dosahováno, svoji úlohu zde hrájí odrazy vln při šíření a například délka měření, kdy jeho prodlužováním zvyšujeme přesnost přijatého signálu.
2 Popis vysílače DCF77 a možnosti jeho využití

2.1 Obecný úvod k vysílání

DCF77 je rádiová stanice vysílající dlouhovlnný časový signál, podle kterého jsou synchronizovány příslušné rádiové hodiny a budíky. Je přenašena zakódovaná úplná časová informace. Vysílané časové značky zajišťují nastavení hodin, které pak jdou stále přesně, včetně nastavení letního a zimního času. Platí za rádiový etalon a nejpřesnější hodiny světa.

2.2 DCF77 jako zdroj časové informace

Vysílá DCF77 vysílá časovou informaci na dlouhých vlnách s kmitočtem 77,5kHz normálovou frekvencí, čas a datum v místním čase SRN na základě údajů Spolkového fyzikálně technického ústavu (PTB) v Braunschweigu. Vysílá se nachází v Mainflingenu (poloha: 50° 01' severní šířky, 09° 00' východní délky), asi 25 km jihozápad od Frankfurta nad Mohanem. Časová informace a normálová frekvence jsou synchronizované PTB normálním časem (vznikajícím z údajů asi 10 Cs-atomových hodin). Přímo na vysílacím místě normálně pracují tři běžné Cs-atomové hodiny. Stanice začala vysílat v září roku 1970. Časová dostupnost vysílače je vysoká, vysílání probíhá nepřerušitelně po dobu 24 hodin. Krátká přerušení nastávají, pokud musí být vlivem rušení přepnuto na rezervní vysílač nebo anténu, při údržbových pracích, které jsou prováděny vždy každou druhou úterý v měsíci v době od 5 do 9 hodin středoevropského času, nebo při přechodu na letní / zimní čas. V případě bouřek a nepříznivého počasí mohou nastat i delší výpadky.

2.3 Technické parametry vysílače DCF77

Výkon:
- Výkon vysílače: 50kW
- Odhadovaný vyzářený výkon (ERP) asi: 30kW

Relativní odchylka frekvence nosné od nominální střední hodnoty za 1 den < 1.10^{-12}, za 100 dní < 2.10^{-13}, což odpovídá relativní odchylce přibližně 1s za 300 000 let.

K vysílání je použita 150m (v případě vysílání rezervní antény je to 200m) vysoká vertikální všesměrová paprsková anténa s kapacitním nástavcem. Volací značka je přenašena třikrát v hodině, vždy v 19., 39. a 59. minutě každé hodiny, tónovou modulací nosné 250Hz znaky Morseovy abecedy, bez přerušení vysílání časových značek [1].

2.4 Dosah vysílače DCF77

DCF77 signál vyzařovaný vysílací anténou dosahuje místa přijmu ve svou cestách. V první případě se šíří jako přízemní vlno podél zemského povrchu, ve druhém případě dosahuje místa přijmu jako ionosférická vlna po odrazu od ionosféry. V případě přímého šíření a jednoho odrazu na spodní straně ionosféry, je získán maximální dosah prostorové vlny DCF77, když opouští vysílací místo tangenciálně k zemskému povrchu, ale naholde také v místě přijmu. Za těchto předpokladů je dosah přibližně 1900km ve dne a asi 2100km v noci. Místa přijmu DCF signálu ve větších vzdálenostech jsou dosažena jen vicenásobnými odrazy (např. dva odrazy v nejnižší vrstvě ionosféry, jeden odraz od zemského povrchu),
které jsou však asociovány s výrazným snížením intenzity pole. Mapa Evropy na obrázku 1 zobrazuje oblast dosahu okruhu 2000km kolem Mainflingenu.

Obrázek 1: Dosah vysílače DCF77 [2]

Za tímto okruhem, byl spolehlivý příjem signálu ověřený pouze v několika individuálních případech:
- Danzig (Gdansk, Polsko) 800 km
- Lodz (Lodz, Polsko) 800 km
- Východní okraj Polska 1000 km
- Belgrade (Jugoslávie) 1100 km
- Stockholm (Švédsko) 1200 km
- Mallorca (Španělsko) 1200 km
- Trondheim (Norsko) 1400 km
- Teneriffa (Španělsko) cca. 2500km, ovšem pouze v noci a s velmi dobrým přijímačem.
- Jedda, Riath (Jemen) cca. 5500km, pouze v noci, 3 až 4 hodiny s rádio hodinami.

V souhrnu, následující výsledky vyplývají pro povrchovou a ionosférickou (prostorovou) vlnu:

1. Velmi stabilní povrchová vlna má velký dosah. Až do několika stovek kilometrů je její přijímaná intenzita pole zřetelně větší než pro vlnu ionosférickou. Větší vzdálenostech pod 500km od vysílače může být očekávaná hodnota intenzity pole povrchové vlny přesahující 1mV/m.

2. V rozsahu vzdáleností mezi 600 a 1100km, mohou příležitostně být povrchová a ionosférická vlna stejné velikosti, což by mohlo vést k vzájemnému oslabení, kdy oba signály jsou fázově posunuty. Na druhou stranu, stejná fáze by mohla zapříčinit dočasně výrazné navýšení intenzity pole. Oba jevy jsou rovněž pozorovaná v Braunschweigu (d=273km). V této souvislosti je důležité vědět, že vzájemné ovlivňování mezi povrchovou a ionosférickou vlnou má pomalý průběh (trvající čtvrt
hodiny a déle) a mezitím je takto dostatek času pro rádiově řízený hodinový impuls k tomu, aby byla přenesena časová informace DCF signálu.

3. Ve vzdálenostech vyšších než 1100km, se zlomek povrchové vlny neustále snižuje a převládá ionosférická vlna, jejíž šíření na velké vzdálenosti je zcela konstantní zvláště během dne. Ve vzdálenostech mezi 1100 a 2000km je intenzita ionosférické vlny několik stovek μV/m, očekávaná hodnota je asi 100 μV/m.

2.5 Časový kód vysílače DCF77

Během každé minuty jsou přenášena čísla minuty, hodiny, dne, dne v týdnu, měsíce a roku impulsovou modulací sekundových znaků v kódu BCD. Tento telegram platí vždy pro následující minutu. Přitom odpovídají sekundové znaky o délce 0,1s binární nule a o délce 0,2s binární jedničce. Přířazení jednotlivých sekundových znaků k přenášené časové informaci ukazuje kódovací schéma na obrázku 2. Tři kontrolní bity P1, P2 a P3 doplňují vždy předcházející informační slova (7 bitů pro minutu, 6 bitů pro hodiny a 22 bitů pro datum, včetně čísla dnu v týdnu) právě na sudý počet jedniček (sudá parita).

Tabulka 1: Význam symbolů ve schématu [1]

Obrázek 2: Kódové schéma [2]

Časové znaky Z1 a Z2 (č. 17 a 18) ukazují, na který časový systém se vztahuje vysílaná časová informace. Při vysílání SEČ jsou sekundové znaky Z1, Z2 = 01b, při vysílání SELČ jsou Z1, Z2 = 10b, ostatní kombinace 00b a 11b nejsou prozatím využívány.

Před přechodem z SEČ na SELČ, nebo naopak, se vysílají kromě toho vždy po celou jednu hodinu před změnou sekundový znak A1 (č. 16) = 1b. Toto prodloužení začíná při přechodu z SEČ na SELČ (z SELČ na SEČ) v 01:00:16 hodin SEČ (2:00:16 hodin SELČ) a končí v 01:59:16 hodin SEČ (02:59:16 hodin SELČ).

Sekundový znak A2 (č. 19) oznamuje vložení přestupné sekundy. Vysílá se rovněž po jednu hodinu před zaváděním přestupné sekundy jako A2 = 1b. Přestupné sekundy se zavádějí na světě ke stejněmu časovému okamžiku do koordinované světové časové stupnice UTC, přednostně na konci poslední hodiny 31. prosince nebo 30. června. To znamená, že přestupné sekundy jsou v SRN vsunuty do zákonného času sekundu před 1 hodinou SEČ 1. ledna nebo před 2 hodinou SELČ 1. července. Při zavádění přestupné sekundy 1. ledna (1. července)
začíná signalizace sekundovým znakem A2 v 00:00:19 hodin SEČ (01:00:19 hodin SELČ) a končí v 00:59:19 hodin SEČ (01:59:19 hodin SELČ).

Při zavedení přestupné sekundy trvá příslušná minuta 61 sekund, značka před 01:00:00 hodin SEČ (02:00:00 hodin SELČ) (59. sekundový znak) vysílána snížená po 0,1 sekundu (0b) a příslušný znak vložené 60. sekundy je vynechán (minutová značka) [1].

2.6 Klíčování fáze DCF77 nosné pseudonáhodnou sekvencí

K amplituové modulaci AM je DCF77 dodatečně klíčována od roku 1983 pseudonáhodným fázový šumem. Toho je dosaženo tak, že je fáze nosné klíčována fázovým zdvihem ±12% pseudonáhodnou binární sekvencí, přičemž střední hodnota fáze nosné zůstane nezměněna.

Pseudonáhodná sekvence je generována devitibitovým posuvným registrem (viz. obrázek 3) jehož výstupy na 5. a 9. bitu jsou vedeny přes XOR hradlo na zpět na vstup posuvného registru. Pokaždé po uplynutí 0,2s nové sekundy je spuštěn posuvný registr ze stavu nula. Registr se zastaví po uplynutí úplného cyklu, což je přibližně 7ms před dalším sekundovým znakem. Registr je taktoval fázové frekvence 645,833333Hz což je 120. subharmonická nosná frekvence 77,5kHz. Doba celého cyklu posuvného registru je necelých 793ms. Každým cyklem šumu je přenesen 1 bit, přičemž invertované pseudonáhodné pořadí odpovídá datovému stavu log.1. Fázovým šumem je přenašena, až na vynechaný 59. sekundový znak u AM (signalizující minutový znak), stejná binární informace jako u AM. Namísto vynechaného 59. sekundového znaku u AM se při kódování sekvencí inverzního klíčování (SIK) fáze nosné signalizuje minutová značka deseti invertovanými pseudonáhodnými sekvencemi v 0. až 9. sekundě nové minuty.

Obrázek 3: Devitibitový posuvný registr (FSR) pro generování pseudonáhodné sekvence (PNS). Klopny obvod (FF) převádí posuvný registr (FSR) ze stálého nulového stavu. Kódování sekvencí inverzním klíčováním (SIK) pro modulaci dat [3]

Pro ilustraci popisovaných vztahů, je na obrázku 4 vyzačena amplituová a fázová odezva

po dobu trvání 1s pro nulový stav. Stavu nízké úrovni (L) na výstupu sčítače dat byla přiřazena fáze φ_m + Δφ a stavu vysoké úrovni (H) byla přiřazena fáze φ_m + Δφ. Změny fázové modulace a amplitudy v řídícím signálu, na začátku a konci časových značek, probíhají v kladné nule přechody nosné v definovaných časech. Tím je zajištěno, že nosná, amplituové modulovaný signál a šumové cykly jsou fázově synchronizovány. Na konci příjmu tyto náhlé
změny nejsou jakkoliv rozeznatelné, jelikož fáze a amplituda jsou tvořeny pouze významnými časovými konstantami.

Obrázek 4: Vývoj amplitudy a fáze signálu DCF77 během 1s [3]

Na přijímací straně se dá použitá pseudonáhodná sekvence reprodukovat jako hledající signál křížově korelovaný s přijímaným fázovým šumem. Křížová korelace ve spojení s pseudonáhodným fázovým šumem dovoluje přesné určení pozice časové značky v přijímaném signálu. Díky použití pseudonáhodného fázového šumu není rušen přijem amplitudově modulovaných časových signálů a také nejsou ovlivněny vlastnosti DCF77 jako vysílače normálové frekvence. Zavedením kódování časové informace SIK fáze nosné je umožněn přijem časové informace tímto druhem provozu ve větších vzdálenostech od vysílače při horším poměru signál / šum a větší odolnost proti rušení, než tomu bylo při přijmu informace kódované poklesem amplitudy [3].

2.7 Frekvenční spektrum signálu DCF77

Obálka spektrální hustoty signálu DCF77 sleduje ve frekvenčním pásmu distribuci \(\frac{\sin x}{x}\) s minimem na násobcích hodinové frekvence \(f_T\). Obálka je naplněna spektrálními čarami, jejichž frekvenční rozestup je roven \(f_T/N\). Amplitudy dílčích čar jsou závislé na \(\sin \Delta \varphi\), zatímco pro amplitudu nosné je to funkce \(\cos \Delta \varphi\). Obrázek 5 zobrazuje změřené frekvenční spektrum DCF pseudonáhodného kódu. V důsledku rozlišovací schopnosti šířky pásma spektrálního analyzátoru degenerují spektrální čáry do souvislé spektrální hustoty obálky [3].
2.8 Detekce signálu a poměr S/N

Při detekci amplitudově modulovaného signálu nastává vlivem rušení posuv rozhodovací úrovně detektoru v závislosti na tom, zda je rušivý signál ve fázi, nebo v protifázi s nosnou přijímaného signálu (viz. obrázek 6). Maximální úroveň rušivého signálu, kdy ještě bude značka přečtena, je teoreticky polovina rozdílu mezi úrovní jedničky a nuly, tedy 37,5 % úrovni nosné. Prakticky při tom již dochází na výstupu detektoru k neúnosné změně délky značky. Předpokládejme u přijímače s filtrem vyššího řádu, že se tvar 100ms značky za filtrem bude podobat části sinusovky s kmitočtem 5Hz, a že pro správné vyhodnocení může být délka značky v rozmezí 60 až 140ms. V tom případě je maximální úroveň rušivého signálu pro zachování čitelnosti jen 30%, tedy cca 10dB.

Pokud záleží více na parametrech než na ceně přijímače, je výhodné použít přijímač se synchronním detektorem. Zatímco na běžném diodovém detektoru se sečtou všechna napětí, synchrondetektor potlačí složky kolmé na fázi nosné přijímaného signálu. Tím klesne šumový výkon na polovinu a citlivost přijímače vzroste až o 3dB. Další výhodou synchrondetektoru je, že na jeho výstupu jsou pouze produkty směšovány a rušivý signál s rozdílným kmitočtem se již neprojeví stejnosměrným posuvem napětí, ale pouze rozdílovým kmitočtem. Dolní propust zařazená na výstup synchrondetektoru má stejný efekt, jako zvyšování počtu rezonátorů před detektorem.

Na parametry přijímače má zásadní vliv jeho anténa. Prakticky u všech vyráběných přijímačů je použita feritová anténa. Její zisk je závislý na rozměrech, permeabilitě materiálu a také na rozložení vinutí vzhledem k délce feritové antény. Kvalitní feritová anténa délky 150mm z materiálu s vysokou permeabilitou (drážkovaná) a s rovnoměrně rozloženým vinutím po celé délce má zisk 85 až 90dB. Krátké feritové antény, používané v malých DCF modulech, mají zisk podstatně nižší. Tato hodnota by se na první pohled mohla zdát velmi špatná. Na kmitočtu 77,5kHz však nad tepelným šumem prevládá atmosférický šum, jehož hodnota je až 90dB. Při použití lepší feritové antény se s přijímaným atmosférickým šumem dostaneme nad úroveň šumu vstupu přijímače a další zvyšování zisku antény už nemá význam. To však platí jen pro otevřený prostor. Uvnitř budov je zeslaben jak užitěný signál, tak i atmosférický šum a kvalitnější anténa se využije. V budovách ale obvykle vzniká rušení, které se šíří především po elektroinstalaci, takže citlivý přijímač je potom zbytečný [4].

2.9 Dekódování signálu

Existuje celá řada možností, jak signál z přijímače dekódovat. Nejjednodušší programy uváděně v příručkách o programování jednočipových mikroprocesorů čekají na náběžnou hranu značky, změří její délku a po jejím skončení a odčasování pauzy 0,8s čekají na další značku. Pokud je značka v rozmezí 60 až 140ms, bere se jako 0 a při délce 160 až 240ms je to 1. Zásadní nevýhodou takového programu je závislost posunu dekódovaného času na chybě při vzhodnocení náběžné hrany té značky, po které se přepisuje autonomní čas dekódovaným časem z přijímače. Mnohem lepší výsledky dává dekodér, který průměruje náběžné hrany sekundových značek pomocí PLL. Mimo podstatné přesnější synchronizace času se zmenší rozptyl délek vzhodnocovaných časových značek na polovinu (vadí jen rozptyl sestupné hrany, náběžná je definována přesně) a přijímač je odolnější proti rušení. Jako jednu z kontrol platného signálu lze využít i test, zda náběžná hrana přišla v požadované toleranci.

Největšího zabezpečení časové informace lze dosáhnout porovnáváním několika následujících časových informací. Už při třech čteních je možné získat věrňou hodinou časovou informaci. Je také výhodné při inicializaci počít ověřování snížit. Počít ověřování se volí podle požadovaného stupně zabezpečení dat a též s ohledem na sílu ostatních kontrol použitých při dekódování.

Vyhodnocovat celý časový kód najednou, ale z hlediska spolehlivosti nevýhodné. Při jedné chybě během minuty jsou všechna čtená data označena za neplatná, zatímco při čtení rozděleném na minuty, hodiny a datum jsou dílčí datové bloky podstatně kratší a tím i odolnější proti chybám. Při skládání časové informace je možné použít části zachycené v různých minutách [4].

2.10 Směrování antény přijímačů DCF

Přijímače DCF prakticky ve většině případěch používají feritovou anténu, která je pro dlouhovlnné pásmo optimální. Anténa je citlivá na magnetickou složku signálu a oproti drátovým anténám, které jsou citlivé na elektrickou složku, mají navíc tyto odlišnosti:
- nezáleží na výšce antény nad zemí
- směrová charakteristika feritové antény je osmifázová

Feritová anténa pracuje stejně dobře i přímo na zemi a její činnosti nevadí ani silné zdi budov. Je proto zbytečné dávat ji na vyvýšené místo, nebo ven mimo budovu. Takové umístění by jen zvýšilo pravděpodobnost poškození přijímače při bource. Signál zaslabuji ježelezobetonové stavby, ale i tam je provoz přijímače možný.

Směrová charakteristika feritové antény má dvě široká maxima otočená o 180 stupňů a kolmo na ně dvě ostrá minima. Když signál přichází ze západu, má mít feritová anténa směr sever-již. Pokud se směr antény liší až o 45 stupňů, nemá to na kvalitu přijmu vliv.

Často však vznikají problémy s rušením signálu. Pokud rušení přichází jen z jednoho směru a rozdíl od směru užitečného signálu je alespoň 30 stupňů, je výhodné anténu směrovat ne na maximum signálu, ale na minimum rušení. Pokud se rušení šíří železobetonovou konstrukcí budovy a přichází ze všech stran, nedá se směrováním antény odstranit. V takovém případě je nutné pro přijímač hledat jiné místo, obvykle na okně.

Mezi nejčastější zdroje rušení patří televizory. Snímkový kmitočet 50Hz má široké spektrum harmonických a 1500. harmonické leží přímo na přijímaném kmitočtu. Pátá harmonická řádkového kmitočtu je sice podstatně silnější, ale je od přijímaného kmitočtu vzdálena o 625Hz, což kvalitní přijímač DCF odfiltruje. Počítačové monitory jsou mnohem lépe stíněny a používají jiný snímkový kmitočet, proto ruší podstatně méně. Dále ruší např. spinané zdroje používané v počítačích, faxech atd. Tyto zdroje obvykle zaručí pouze okruh cca do 1 až 2m. Rušení je jednak přímo vyzařované do okolí, jednak se šíří po elektroinstalaci. Tak může znemožnit příjem až do vzdálenosti desítek metrů.

Pokud se k přijímači použije navíc externí anténa, vytváří na feritové anténě přijímače cca 20x větší signál, než je signál přijímaný přímo. Proto záleží především na umístění externí antény a přijímač může být umístěn i v prostředí s vyšší úrovní rušení [4].
2.11 Budoucnost vysílače DCF77

Protože je tento vysílač téměř jediným a nejpoužívanějším zařízením svého druhu v Evropě, jsou si provozovatelé PTB a Spolková pošta Telekom vědomi odpovědnosti za rozsáhlou sít’ časoměrných zařízení rozšířených i mimo SRN závislých na jejich vysílání. Vzhledem k tomu, že je dlouhovlnné vysílání technickou nenáročností přijímacího zařízení na straně uživatele jediným z nejvýhodnějších způsobů sdělování přesného času, podnikají obě instituce kroky k neustálému zdokonalování technického vybavení stanice DCF77 a k zajištění jejího fungování i v budoucnosti.

3 Realizace zařízení

3.1 Blokové schéma kompletního zařízení:

![Obrázek 7: Blokové schéma celého zařízení](image)

3.2 Antenní předzesilovač

Schéma předzesilovače je uvedeno na obrázku 8. Signál vysílače DCF77 je přijímán feritovou anténou L1, kterou tvoří feritová tyč o průměru 8mm, délky 60mm a na ni je navinuta cívka se 132 závity z měděného drátu o průměru 0,2mm. Konkrétní anténa byla převzata ze zakoupené stavebnice pro vlastní konstrukce hodin, kalendářů apod. Anténa spolu s kondenzátorem C2 a C3 tvoří paralelní rezonanční obvod laděný na vstupní rezonanční kmitočet 77,5kHz. Ten jsem ladil pomocí signálního generátoru, na jehož výstupu byla připojena vysílací anténa s kmitočtem 77,5kHz a minimální amplitudou. Na výstupu rezonančního obvodu jsem osciloskopem pozoroval přijímaný signál a doladil jej tak, aby jeho amplituda na výstupu byla co největší.

Na místě kondenzátoru C3 jsem nejprve použil kapacitní trimmer pro co nejjednodušší naladění optimálního rezonančního kmitočtu. Po odměření hodnoty trimmeru jsem jej, z důvodu obecně nízké kvality a stabilitě kapacitních trimrů, nahradil standardním kapacitorem, jehož hodnota se nejvíce blížila zjištěné. Kondenzátor C2 je zde použit fóliový (svitkový). Tyto kondenzátory jsou teplotně stabilní s nízkými ztrátami, a proto se hodí i do rezonančních obvodů. Jejich parazitní indukčnost ale omezuje použití na kmitočtový rozsah maximálně jednotek MHz, avšak pro potřeby DCF příjmu je vhodný.

Po přijetí LC obvodem je signál dále zesílen tranzistorem JFET typu BF245A. Tento tranzistor představuje 1. stupeň antenního předzesilovače s vysokým vstupním odporem a impedancí, díky které prakticky nezatěžuje laděný obvod antény a zajišťuje maximální výkonový přenos.

Druhý stupeň zesilovače je realizován tranzistorem PNP BC560B. Oba stupně jsou ve vzájemně zpětně vazbě, stejnosměrně vázané, se společným emitorem.

Celkový zisk udává odporový dělič realizovaný rezistory R3 a R4 a zároveň nastavuje pracovní bod tranzistoru T1. Optimální pracovní bod tranzistoru T2 jsem nastavoval nejprve odpovídním trimrem na místě R2 a poté jej nahradil klasickým rezistorem s hodnotou blížící se změřené hodnotě trimru. Napájení předzesilovače napříčm Vcc = 5V je filtrováno RC článkem R1 a C1 (tantalový kondenzátor).
Předzesilovač na svém výstupu poskytuje optimálně zesílený, minimálně zkreslený signál. Při zachovaném poměru signálu k šumu jsem dosáhl celkového zisku 15dB s hodnotami rezistorů dělí: \( R_3 = 1k\Omega \) a \( R_4 = 100\Omega \). Rezistor v bázi tranzistoru T2, po doladění pracovního bodu, měl hodnotu \( R_2 = 500\Omega \).

Obrázek 8.: Zapojení anténního předzesilovače

Obrázek 9: Simulace anténního předzesilovače v programu PSpice; spektrum signálu při příjmu na rezonančním obvodu (zelený průběh) a spektrum po zesílení (červeně)
3.3 Přímozerosilující přijímač

3.3.1 Přijímače s analogovým zpracováním signálů

Řadí se zde především přijímače určené pro příjem a zpracování analogově modulovaných signálů tj. modulovaných amplitudově (AM), kmítočtově (FM) a fázově (PM). S minimálními úpravami je možné použít i pro některé základní číslicové modulační metody jako například FSK (Frequency Shift Keying), ASK (Amplitude Shift Keying) apod. V našem případě jde o příjem amplitudově modulovaného signálu, který je navíc klíčovaný pseudonáhodným řízněm PSK (Phase Shift Keying).

Přijímače s přímým zesílením

[Diagram]

Obrázek 10: Blokové schéma přímozerosilujícího přijímače [5]

Společným znakem veškerých variant přijímačů s přímým zesílením je, že se v nich signál zpracovává od anténových svorek až po vsup demodulátoru na stejném kmítočtu, na kterému byl signál vyslán vysílačem. Mezi jejich výhody patří obvodová jednoduchost, možnost plynulého překrytí požadovaného pásmo kmitočtů bez jakýchkoliv mezer a slušná citlivost (u variant se zavedenou zpětnou vazbou). Nevýhodou je méně se šíření přeneseného pásmo a citlivost při přelaďování přijímače. To je dano tím, že pro daný činitel jakosti (Q) kmitového okruhu, který zabezpečuje selektivitu přijímače, je šířka pásmo B₀ přímo úměrná kmitočtu f₀ dle vztahu:

\[ B_0 = \frac{f_0}{Q}, \]

a při přelaďování přijímače se tedy bude měnit. Zátěži vysokofrekvenčních zesilovačů přijímače je kmitový okruh (nebo kmitavé okruhy u vícestupňových zesilovačů). Dynamický odpor kmitového okruhu je dán součinem \( R_d = \omega_0 LQ \) a je tedy také přímo úměrný pracovnímu kmítočtu \( \omega_0 \). Zesílení vysokofrekvenčního zesilovače je dán přibližně součinem s dynamického odporu zátěže a strnosti převodní charakteristiky použitého aktivního prvku. Spolu s kmítočtem se tedy bude měnit I zesílení zesilovače a tím i jeho citlivost. Tyto vlastnosti jsou spolu s náchylností vícestupňových přijímačů k nestabilitě největšími nedostatkami přijímačů s přímým zesílením. Některé zmíněné vlastnosti lze částečně eliminovat použitím regulovatelné zpětné vazby, roste však složitost ovládání a zhoršuje se i dlouhodobá stabilita. Výhody tohoto typu přijímače se projevují pouze v případě, že je přijímač naladěn na jediný kmítočet, kterým je právě navrhován přijímač DCF signálu.

3.3.2 Popis integrovaného obvodu A244D

A244D je přímý použitý obvodu TCA440, který se již nevyvíjí. Jedná se o 16ti pinový integrovaný obvod určený pro přijímače AM signálů do frekvence 30MHz. Ve své struktuře obvod sdružuje funkci řízeného vř předzesilovače, směšovače, oscilátoru, dále pak
čtyřstupňový mf zesilovač, dva nezávislé regulační obvody (jeden pro vf, druhý pro mf část) a vnitřní stabilizační obvod umožňující používat napájecí napětí v rozsahu 4,5 - 15V.

Vysokofrekvenční vstupní signál prochází přes regulovatelný a přebuzený vstupní vf zesilovač člen do symetrického směšovače. Prostřednictvím vysokofrekvenčního signálu generovaného odděleným oscilátoriem je vstupní signál vyslán do mf zesilovače. Multiplikativní směšování obsahuje pouze několik harmonických složek. Regulace zesílení je uskutečněna prostřednictvím dvou nezávislých zpětnovazebních regulačních obvodů: pro vf část a druhá pro mf. Těmito body je získávána dynamika kolem 100dB. Řídící napětí z mf zesilovače může být užíváno pro měřicí přístroj s otočnou cívkou (indikátor intenzity pole). Mezifrekvenční zesilovač se sestává ze 4 zesilovacích stupňů. První, druhý a třetí mohou být řízeny. Šířka pásma mezifrekvenčního zesilovače je přibližně 2MHz a z toho důvodu postačuje pro obvyklé mf kmitočty v AM pásme kolem 460kHz.

Symetrické uspořádání celého schématu zaručuje správné oscilování (kmitání). Můstkové zapojení směšovače zabraňuje náhlému selhání.

| 1. Vf předzesilovač, vstup 1 | 9. Vstup řízeného mf zesilovače |
| 2. Vf předzesilovač, vstup 2 | 10. Indikovaný výstup řízeného mf zesilovače |
| 4. Obvod oscilátoru pin 1 | 12. Vstup mf zesilovače |
| 5. Obvod oscilátoru pin 2 | 13. Blokování mf |
| 7. Mf výstup | 15. Výstup směšovače |
| 8. GND | 16. Výstup směšovače 2 |

Tabulka 2: Význam jednotlivých pinů obvodu A244D

Obrázek 11: Blokové schéma integrovaného obvodu A244D (TCA440) [6]
### 3.3.3 Popis operačního zesilovače MC33502P

- Zjednodušené blokové schéma MC33502P je uvedeno na obrázku 12.

Osni-pinový operační zesilovač s nízkým napájecím napětím: 1 - 7V (proti zemi). Zesilovač je schopný plnit všechny funkce v plném rozsahu od 1V. OZ je typu rail-to-rail, to znamená, že výstupní i vstupní napětí může být téměř rovné napájecímu (běžné OZ mají rozkmit na výstupu omezen do cca 0,8-1,4V od napájení). Můžeme tak využít maximum poskytnuté napájení. To je dán díky použité technologii SMARTMOS. Šířka pásma je 5MHz a rychlost přeběhu 3,0V/us, která byla dosažena využitím rychlých tranzistorů DNMOS a vertikálních PNP tranzistorů.

![This device contains 98 active transistors per amplifier.](image.png)

**Obrázek 12:** Zjednodušené blokové schéma operačního zesilovače MC33502P [7]

<table>
<thead>
<tr>
<th>Tabulka 3: Význam jednotlivých pinů operačního zesilovače MC33502P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Výstup 1</td>
</tr>
<tr>
<td>2. Vstup 1</td>
</tr>
<tr>
<td>3. Vstup 1</td>
</tr>
<tr>
<td>4. ( V_{EE} )</td>
</tr>
</tbody>
</table>

V našem případě je operační zesilovač MC33502P zapojen jako invertující komparátor (základní model uveden na obrázku 13a). Kladná zpětná vazba, realizovaná napěťovým dělicem v podobě kondenzátoru a rezistoru, zavádí hysterezi, která potlačuje nežádoucí citlivost na šum kolem rozhodovací (překlápěcí) úrovni, a také urychluje překlápnění výstupu komparátoru.

Přivedeme-li na komparátor dostatečně velké záporné napětí \( U_1 \), bude \( U_2 = U_{2H} \). Na neinvertujícím vstupu (+) bude tedy napětí \( u+ \) určené s využitím principu superpozice při působícím napětí \( U_{2H} \) a \( U_1 \). Při zvyšování vstupního napětí \( U_1 \) se výstupní napětí \( U_2 \) nemění až do okamžiku, kdy diferenční napětí na komparátoru dosáhne nulové hodnoty (\( U_d = U_1 - U_{1H} = 0 \) tj. \( U_1 = U_{1H} \). V tom okamžiku klesne výstupní napětí \( U_d \) a \( U_d < 0 \). Vlivem kladné zpětné vazby přejde výstupní napětí velmi rychle z hodnoty \( U_{2H} \) na hodnotu \( U_{2L} \). Napětí na neinvertujícím vstupu \( u+ \) má nyní hodnotu určenou opět pomocí principu superpozice při působícím napětí \( U_{2L} \) a \( U_1 \) přičemž \( U_d < 0 \), takže tento stav je stabilní. Další změna výstupního napětí nastane opět teprve tehdy, když diferenční napětí \( U_d = 0 \), t.j., když \( U_1 \) klesne na hodnotu \( U_{1L} \). Převodní charakteristika invertujícího komparátoru je na obrázku 13b.
Přivedeme-li na vstup komparátoru harmonický signál, jehož rozkmit je větší než hystereze, je na výstupu periodický obdélníkový signál, jehož opakovací kmitočet je shodný s kmitočtem vstupního budicího signálu.

**Obrázek 13:** a) Zapojení invertujícího komparátoru, b) Převodní charakteristika invertujícího komparátoru

### 3.3.4 Popis příjímače DCF77

#### 3.3.4.1 Popis schématu příjímače

- zapojení příjímače viz. obrázek 14.

Vstupní napětí $V_{cc} = 5V$ přiděleno na vstup kladného stabilizátoru napětí 7805, jehož zapojení je odvozeno z katalogového listu [9]. Za usměrňovačem je napětí rozvedeno na komparátor, odporový dělicí a na piny 6 a 4 obvodu TCA440, které představují napájení vnitřního oscilátoru, resp. napájení integrovaného obvodu. Kondenzátory C3 a C4 před oběma vstupy potlačují výbuch

Signál z anténního předzesilovače je přidělen přes vazební kondenzátor C7 na pin 1 integrovaného obvodu IO2 (TCA440), který představuje vstup vf předzesilovače, kde je dále zpracován. Dle údajů z datasheetu má předzesilovač v TCA440 při napájecím napětí 5V rozsah řízení zisku cca 40dB.

Výstup směšovače IO2 (pin16) budi krytalový filtr přes tranzistor T1 v zapojení se společným kolektorem (emitorový sledovač), který tvoří zdroj s malou impedancí pro krytal zapojený jako filtr soustředěné selektivity, který má charakter úzké pásmové propusti na kmitočtu 77,5kHz. Vlastnosti filtru jsem rozebral v následující kapitole. Dále signál postupuje přes vazební kondenzátor C14 na vstup 12 TCA440, který představuje, podle vnitřního zapojení integrovaného obvodu, 1. stupeň mF zesilovače. Signál v IO2 projde přes další tři stupně mF zesilovače a postupuje na výstup (pin 7). První tři mezifrekvenční stupně mají zapojeno automatické řízení zisku na vývodu č. 9. IO2 má na pinu 10 vývod pro případný indikátor síly signálu, proto musí být zatížen rezistorem R16, který jej nahrazuje. Z tohoto výstupu je navíc odebíráno, přes dělicí realizovaný rezistory R6, R7 a filtracní C8, napětí pro řízení vF zesilovače na vstupu 3. Obvod směšovače v IO2 není v tomto zapojení využitý. Dle údajů z datasheetu má předzesilovač v TCA440 při napájecím napětí $U_{cc} = 5V$ rozsah řízení zisku cca 40dB.
Na výstupu TCA440 (pin 7) se zesílený signál odfiltrace pásmovou propustí, naladěnou na rezonanční kmitočet přijímaného signálu 77,5kHz, od případných rušení. Tento filtr jsem popsal ve druhé následující kapitole.

Protí přehlenci operačního zesilovače (IO3) je zde ještě zaveden diodový detektor s Shottkyho diodou D1 a filtračním RC článkem v podobě rezistoru R9 a C11. Rezistor R10 prodlužuje časovou konstantu špičkového detektoru při vybíjení.

Na invertující vstup (pin 2) operačního zesilovače MC33502P, zapojeného jako invertující komparátor (jehož funkce je bliže popsána v kapitole 3.3.3.), přichází přes vazební kondenzátor C16 odfiltrovaný signál, který komparátor zpracuje na požadovaný obdélníkový. Z výstupu (pin 1) operačního zesilovače na neinvertující vstup (pin 3), je napěťovým dělicem v zapojení kondenzátoru C18 a rezistoru R13, realizovaná kladná zpětná vazba, která do průběhu výstupního obdélníkového signálu zavádí hysterezi. Komparační úroveň IO3 je dána odporovým dělicem v podobě rezistorů R14 a R15, která podle hodnot rezistorů nastavena na polovinu napájecího napětí. Pro potlačení vř rušení je zde zapojen kondenzátor C19. Nápájení operačního zesilovače Vcc = 5V je přivedeno na pin 8, zem pak představuje pin 4, výstup obdélníkového signálu je na pinu 1, zbylé vývody nejsou využity.
Obrázek 14: Schéma zapojení přijímače
3.3.4.2 Krystalový filtr

Základním prvkem piezokrystalového filtru je piezokrystalový rezonátor, běžně nazývaný krystal. Je vyroben vhodným výbrusem (v přesně stanovených řezech) z monokrystalu křemene, např. ve tvaru hranolu nebo destičky, kam jsou na protilehlé stěn napařeny kovové elektrody. Využívá piezokrystalového jevu, při kterém v důsledku mechanického namáhání vhodného materiálu vzniká na jeho stěnách elektrické napětí a naopak, přiložením napětí na takový materiál dochází k jeho mechanické deformaci. Je-li tedy na výbrus z vhodného materiálu přivedeno vysokofrekvenční napětí, jsou v celém jeho objemu vybuzeny mechanické kmity a krystal se navenek jeví jako selektivní obvod s vysokým činitelem jakosti. Schématická značka krystalu a jeho ekvivalentní obvodový model jsou na obrázku 14. Prvky L\(_{K1}\), R\(_{K1}\), C\(_{K1}\), tvořící sériový rezonanční obvod, jsou dány mechanickými vlastnostmi krystalu a určují jeho základní rezonanční kmitočet. Další sériové rezonanční obvody určují vyšší rezonanční kmitočty (módy nebo harmonické) krystalu. Kapacita C\(_P\) reprezentuje především kapacity elektrod v držáku krystalu. Pro rezonanční kmitočty při sériové a paralelní rezonanci platí vztahy:

\[
f_s = \frac{1}{2\pi \sqrt{L_{K1} C_{K1}}} \quad \text{a} \quad f_p = \frac{1}{2\pi \sqrt{L_{K1} C_{ekv}}} = f_s \sqrt{1 + \frac{C_{K1}}{C_P}},
\]

kde

\[
C_{ekv} = \frac{C_P C_{K1}}{C_P + C_{K1}} \quad [5]
\]

Činitel jakosti krystalů dosahuje extrémně vysokých hodnot, řádu \(10^5\) až \(10^6\), při vynikající časové i teplotní stabilitě v případě 77,5kHz krystalu je činitel jakostí Q = 6.10\(^4\).

Pomocí piezokrystalových rezonátorů (krystalů) je možné realizovat filtry soustředěné selektivity typu pásmových propustí, vyznačujících se velmi dobrou selektivitou, časovou i teplotní stabilitou.

\[\text{Obrázek 15: a) schématická značka krystalu, b) ekvivalentní model krystalu, c) kmitočtová závislost reaktance}\]
Vzhledem k velmi malému množství odborné literatury a jiných zdrojů, kde se jedná pouze o zmínky o návrzích těchto filtrů, bylo zřejmě nejnáročnější při realizaci přijímače nalezení vhodného zapojení krystalového filtru s jedním krystalem. Úvažoval jsem zapojení filtru s více krystalů, tzv. příčkový filtr, avšak bránila tomu skutečnost špatné dostupnosti použitých krystalů na frekvenci 77,5kHz, musel jsem si tedy vystačit pouze s jedním.

Úkolem bylo najít vhodné zapojení krystalového filtru, jehož konečné zapojení a kmitočtová závislost reaktance je na obrázku 16, resp. 17.

![Obrázek 16: Schéma zapojení krystalového filtru](image)

Jelikož pro simulaci krystalu 77,5kHz v knihovně programu PSpice není k dispozici příslušný model, změnil jsem parametry modelu 100kHz krystalu a tím se dostal na požadované hodnoty.

U filtru pásmového propusti na kmitočtu 77,5kHz využíváme pouze sériového rezonančního kmitočtu krystalu, zajímá nás zvýraznění špičky oproti ustálené („nulové“) hodnotě, které je u simulovaného filtru 25,2dB. Na obrázku 18 je změřená charakteristika reálného filtru, zde je zvýraznění sériové rezonance rovno 24,24dB.
Na výstupu integrovaného obvodu TCA440 (pin 7) je zapojen paralelní rezonanční obvod jako pásmová propust. Použitá je zde cívka s feritovým hrníčkovým jádrem o průměru 14mm z materiálu H12 a součinitelem indukčnosti $A_L = 1600\,\text{nH/ závit}$. Pro požadovanou indukčnost $L = 108\,\mu\text{H}$ bude počet závitů $N$ roven podle vzorce:

$$N = \sqrt{\frac{L}{A_L}} = \sqrt{\frac{108.10^{-6}}{1600.10^{-9}}} = 8,22$$

V reálu je navinuto 8,5 závitů měděného lakovaného drátu o průměru 0,3mm. Aby byl obvod v rezonanci, dopočítal jsem podle vztahu odvozeného od známého Thompsonova vzorce [8] hodnotu kondenzátoru:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \Rightarrow C = \frac{1}{(2\pi)^2 L f_0^2} = \frac{1}{(2\pi)^2 .108.10^{-6}.(77.5.10^3)^2} = 3,905.10^{-8} = 39,05\text{nF}$$

Charakteristiku pásmové propusti daného filtru dokládá simulace na obrázku 20:

**Obrázek 19**: Filtr pásmové propusti
Obrázek 20: Filtr pásmová propust na výstupu (pin 7) obvodu TCA440

3.3.5 Ověření základních parametrů přijímače

Pro spolehlivou detekci signálu je třeba dodržet poměr signál / (šum + úroveň rušení) minimálně 15dB. Pokud jsou v některých místech problémy s kvalitou signálu, většinou se nejedná o jeho nedostatečnou úroveň, ale o vysokou úroveň rušení uvnitř objektu, kde chceme signál DCF přijímat. Čím je v budově signál více zeslabený, tím musí být pro zachování jeho čitelnosti nižší i úroveň rušení. Problém je, že normy pro elektrotechnickou kompatibilitu chrání přišnější až rozhlasové pásmo nad 150kHz, proto i když zařízení splňují požadavky norem, můžeme na kmítočtu 77,5kHz očekávat cokoliv. Svůj vliv na přijetí signálu mají i železobetonové konstrukce budov, které před DCF signálem poskytují dokonalé stínění.

Intenzita pole DCF signálu ve Středních Čechách je cca \( H = 180\,\mu A/m \), na Moravě to může být jen polovina, tj. \( H = 90\,\mu A/m \) [10]. Po neúspěšných pokusech zachytit, i s jiným přístrojem řízeným DCF signálem, na různých místech ve školní budově signál DCF kmítočtu, musel jsem pro změření základních funkcí přijímače generovat vlastní signál. Toho jsem dosáhl pomocí signálního generátoru na jehož výstupu byla zapojena kulatá rámová anténa.

Anténa je zhotovena jako jednoduchá smyčka se dva závity z měděného lakovaného drátu průměru 2mm. Průměr celé smyčky je \( d = 260\,mm \).

Feritová anténa předzesilovače s připojeným přijímačem byla při měření umístěna uprostřed této smyčky. Rozmístění přístrojů a zapojení je zobrazeno na obrázku 21. Na generátoru jsem nastavil kmítočet, který odpovídá DCF, tedy \( 77,5\,\mathrm{kHz} \) s minimální amplitudou výstupního napětí, kterou bylo možné nastavit, tj. \( U_g = 3,54\,\mathrm{mVrms} \). Proud procházející smyčkou byl \( I_g = 70\,\mu A \). Do série se smyčkou byl zapojen odporový trimer, zvyšováním jeho hodnoty bylo potlačeno spektrum vysílaného signálu do té míry, až na výstupu přijímače nebyl signál pozorovaný osciloskopem zřetelný, což nastalo při hodnotě odporu trimru \( R = 1\,\mathrm{k\Omega} \). Do tohoto odporu byl práh šumu, tedy minimální hodnota, o kterou musí výkon signálu převyšovat výkon šumu, aby ještě přijímač přijímal roven \( P = 10\,\mathrm{dB} \).
Intenzitu pole vyzařovaného uprostřed smyčky jsem vypočítal podle Biot – Savartova zákona [12]. Ten říká, že část vodiče Δl, jímž prochází proud I, vyvolá ve středu závitu intenzitu magnetického pole H, jejíž velikost je dána vztahem:

\[
\Delta H = \frac{I \Delta l}{4\pi r^2} = \frac{70 \times 10^{-6} \times 1.634}{4\pi \times (130 \times 10^{-3})^2} = 538.6 \mu A / m
\]

kde:
\[
\Delta l = N(2\pi r) = 2(2\pi \times 130 \times 10^{-3}) = 1.634 m
\]
\[
r = d / 2 = 260 \times 10^{-3} = 130 mm
\]
4 Závěr

V bakalářské jsem se v řádné části zabýval popisem vlastností a možnostmi využití 
veřejných rádiových služeb, konkrétně vysílače DCF, vysílajícího přesný kmitočet 77,5kHz, 
 který je využíván v našem případě jako zdroj referenčního signálu pro měření. Jsou zde 
podrobné popsány a rozebrány technické parametry vysílače, dosah, dekódování signálu a 
další z jeho vlastností. Čerpal jsem jak z dostupné české literatury zabývající se touto 
tématicí, tak i z různých anglických zdrojů a to především ze stránek fyzikálně - 
technologické ústavu v Braunschweigu, která má provoz vysílače DCF signálu na starost.

Další část byla věnována návrhem části obvodového řešení s položným spojem 
anténního předzesilovače a přímozesilujícího přijímače. Obě části jsem zrealizoval a při 
ověřování funkce jsem se potýkal s problémy přijmu DCF signálu ve školní budově, který byl 
v jeho prostorách se použitou feritovou anténou nezachytitelný. Tato skutečnost se nezměnila 
aní po doladění všech parametrů prvků obvodů. Po zhodnocení situace jsem základní 
vlastnosti ověřil pomocí smyčky, na kterou jsem přívaděl signál o kmitočtu shodného 
s DCF77.

U předzesilovače jsem kladl důraz na co nejpřesnější vyladění vstupního anténního LC 
rezonančního obvodu na přijímaný kmitočet 77,5kHz a poté na nastavení pracovního bodu 
tranzistoru BC560B pracujícího ve třídě A, jehož zesílení nebylo zpočátku optimální. Po 
optimizaci jsem dosáhl hodnoty výkonového zesílení výstupního signálu oproti vstupnímu o 
15dB. U přijímače jsem zdaře nejvíce času strávil návrhem krystalového filtru. V odborné 
literatuře jsou však jen zmínky a popis základních vlastností krystalů, případně jsou většinou 
všechny zdroje a výpočetní software uzpůsobeny a zaměřeny na návrhy filtrů nepoměrně 
vysších kmitočtů a to od 4MHz výše. Nakonec jsem tedy krystalový filtr experimentálně 
sestavil a pokoušel se změnit parametry obvodových prvků, především kondenzátorů 
apojených paralelně ke krystalu, co nejvíce zvýraznit špičku v sériové rezonanci. Celé 
zapojení krystalu tvoří filtr soustředěné selectivity a jeho šířka pásma je při poklesu o -3dB 
rovná B = 15Hz. Práh šumu, tedy minimální hodnota, o kterou musí výkon signálu převyšovat 
výkon šumu, aby ještě přijímač přijímal, a na jeho výstupu byl stále obdélníkový signál, je 
10dB.

Cílem celého zařízení je generovat kmitočet synchronizovaný s přesností přijímaného 
signálu DCF77. Abychom dostali na výstupu generátoru takový požadovaný kmitočet, 
musíme synchronizační signál o frekvenci 77,5kHz vydělit příslušnou celistvou hodnotou, 
která by v podstatě odpovídala hodnotě předdělíčky.
5 Seznam použité literatury a zdrojů


6 Seznam použitých zkratek

DCF77 - D (Deutsche = Německý), C (označení pásm dlouhých vln), F (Frankfurt), 77 (značí frekvenci vysílače = 77,5kHz)
GPS – Global Positioning System
SRN – Spolková republika Německo
PTB – Fyzikálně - technologický ústav v Braunschweigu, (Physikalish – Technische Bundesanstalt)
ERP – (Effective Radiated Power), celkový výkon vyzářený anténou
BCD – (Binary Coded Decimal), binární kódování dekadických čísel
SEČ – Středoevropský čas
SELČ – Středoevropský letní čas
AM, PM, FM – (Amplitude, Phase, Frequency Modulation), amplitudová, fázová a kmitočtová modulace
FSK, PSK, ASK – (Frequency, Phase, Amplitude Shift Keying), frekvenční, fázové a amplitudové klíčování
SIK – kódování sekvencí inverzního klíčování
PLL – (Phase Locked Loop), smyčka fázového závěsu
OMA- Česká stanice, která šířila normální kmitočet 50kHz do roku 1995
7 Seznam obrázků, tabulek a příloh

Obrázek 1: Dosah vysílání DCF77
Obrázek 2: Kódové schéma
Obrázek 3: Devítibitový posuvný registr
Obrázek 4: Vývoj amplitudy a fáze signálu DCF77 během 1s
Obrázek 5: Spektrum signálu DCF77
Obrázek 6: Detekce signálu
Obrázek 7: Blokové schéma celého zařízení
Obrázek 8.: Zapojení anténního předzesilovače
Obrázek 9: Simulace anténního předzesilovače
Obrázek 10: Blokové schéma integrovaného obvodu A244D
Obrázek 11: Zjednodušené blokové schéma operačního zesilovače MC33502
Obrázek 12: Schéma zapojení předzesilovače
Obrázek 13: a) Zapojení invertujícího komparátoru
b) Převodní charakteristika invertujícího komparátoru
Obrázek 14: Schéma zapojení přijímače
Obrázek 15: a) schématická značka krystalu,
b) ekvivalentní model krystalu,
c) kmitočtová závislost reaktance
Obrázek 16: Schéma zapojení krystalového filtru
Obrázek 17: Spektrum signálu na výstupu anténního předzesilovače
Obrázek 18: Průběh obdélníkového signálu na výstupu přijímače
Obrázek 19: Anténní předzesilovač
Obrázek 20: Přijímač
Obrázek 21: Rozměr desky předzesilovače a zobrazení vodivých cest
Obrázek 22: Rozmístění součástek předzesilovače, spodní pohled
Obrázek 23: Rozmístění součástek předzesilovače, horní pohled
Obrázek 24: Rozměr desky přijímače a zobrazení vodivých cest
Obrázek 25: Rozmístění součástek přijímače, spodní pohled
Obrázek 26: Rozmístění součástek přijímače, horní pohled
Obrázek 27: Spektrum signálu na výstupu anténního předzesilovače
Obrázek 28: Spektrum signálu na invertujícím vstupu komparátoru
Obrázek 29: Spektrum signálu na výstupu anténního předzesilovače
Obrázek 30: Přístup obdélníkového signálu na výstupu přijímače
Obrázek 31: Anténní předzesilovač
Obrázek 32: Anténní předzesilovač
Obrázek 33: Rozmístění kondenzátoru o ±50% na krystalovém filtru

Tabulka 1: Význam symbolů ve schématu
Tabulka 2: Význam jednotlivých pinů obvodu A244D
Tabulka 3: Význam jednotlivých pinů operačního zesilovače MC33502P

Příloha 1- Obrazec plošného spoje anténního předzesilovače
Příloha 2- Seznam součástek anténního předzesilovače
Příloha 3- Obrazec plošného spoje přijímače
Příloha 4- Seznam součástek přijímače
Příloha 5- Naměřené charakteristiky
Příloha 6- Fotografie realizovaného zařízení
Příloha 7- Simulovaná rezonanční křivka krystalového filtra
8 Přílohy

Příloha 1- Obrazec plošného spoje anténního předzesilovače

Obrázek 22: Rozměr desky předzesilovače a zobrazení vodivých cest

Obrázek 23: Rozmístění součástek předzesilovače, spodní pohled

Obrázek 24: Rozmístění součástek předzesilovače, horní pohled
Příloha 2- Seznam součástek anténního předzesilovače

<table>
<thead>
<tr>
<th>Označení</th>
<th>Hodnota</th>
<th>Množství</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezistory [Ω]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>100</td>
<td>1</td>
<td>SMD 1206</td>
</tr>
<tr>
<td>R2</td>
<td>500</td>
<td>1</td>
<td>SMD 1206</td>
</tr>
<tr>
<td>R3</td>
<td>10k</td>
<td>1</td>
<td>SMD 1206</td>
</tr>
<tr>
<td>R4</td>
<td>1k</td>
<td>1</td>
<td>SMD 1206</td>
</tr>
<tr>
<td>Kondenzátory [F]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>10μ/16V</td>
<td>1</td>
<td>Tantalový SMD 6032</td>
</tr>
<tr>
<td>C2</td>
<td>2n2</td>
<td>1</td>
<td>Fóliový, RM = 5mm</td>
</tr>
<tr>
<td>C3</td>
<td>1n5</td>
<td>1</td>
<td>Keramický, RM = 5mm</td>
</tr>
<tr>
<td>Tranzistory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>BC560B</td>
<td>1</td>
<td>NPN</td>
</tr>
<tr>
<td>T2</td>
<td>BF245A</td>
<td>1</td>
<td>J-FET</td>
</tr>
<tr>
<td>Ostatní</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Průměr: 8mm, délka: 60mm</td>
<td>1</td>
<td>Feritová anténa</td>
</tr>
<tr>
<td>Konektor</td>
<td>4 pinový</td>
<td>1</td>
<td>PSH, RM = 2,54mm</td>
</tr>
</tbody>
</table>

Příloha 3- Obrazec plošného spoje přijímače

Obrázek 25: Rozměr desky přijímače a zobrazení vodivých cest
Obrázek 26: Rozmístění součástek přijímače, spodní pohled

Obrázek 27: Rozmístění součástek přijímače, horní pohled
## Příloha 4 - Seznam součástek přijímače

<table>
<thead>
<tr>
<th>Označení</th>
<th>Hodnota</th>
<th>Množství</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezistory [Ω]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>4k7</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R2</td>
<td>3k3</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R3</td>
<td>1k</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R4, R14, R15</td>
<td>2k2</td>
<td>3</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R5</td>
<td>20k</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R6</td>
<td>1k8</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R7</td>
<td>8k2</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R8, R13</td>
<td>10k</td>
<td>2</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R9</td>
<td>39k</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R10</td>
<td>12k</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R11</td>
<td>100</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R12</td>
<td>1M</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>R16</td>
<td>1k5</td>
<td>1</td>
<td>SMD - 1206</td>
</tr>
<tr>
<td>Kondenzátory [F]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>330n</td>
<td>1</td>
<td>Keramický SMD - 1206</td>
</tr>
<tr>
<td>C2, C3, C4, C9, C10, C17, C19</td>
<td>100n</td>
<td>7</td>
<td>Keramický SMD - 1206</td>
</tr>
<tr>
<td>C5, C8</td>
<td>10u/35V</td>
<td>2</td>
<td>Elektrolytický SMD - 5 x 5.5mm</td>
</tr>
<tr>
<td>C6, C14</td>
<td>47n</td>
<td>2</td>
<td>Keramický SMD - 1206</td>
</tr>
<tr>
<td>C7, C16</td>
<td>10n</td>
<td>2</td>
<td>Keramický SMD - 1206</td>
</tr>
<tr>
<td>C11</td>
<td>100u/16V</td>
<td>1</td>
<td>Elektrolytický SMD - 6.3 x 5.5mm</td>
</tr>
<tr>
<td>C12, C13</td>
<td>2p2</td>
<td>2</td>
<td>Keramický SMD - 1206</td>
</tr>
<tr>
<td>C15</td>
<td>47n</td>
<td>1</td>
<td>Keramický SMD - 1206</td>
</tr>
<tr>
<td>C18</td>
<td>10p</td>
<td>1</td>
<td>Keramický SMD - 1206</td>
</tr>
<tr>
<td>Transistory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>BC560B</td>
<td>1</td>
<td>NPN</td>
</tr>
<tr>
<td>Ostatní</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>108u, H12, A1 = 1600</td>
<td>1</td>
<td>Cívka s hrníčkovým jádrem</td>
</tr>
<tr>
<td>Q1</td>
<td>77,5kHz</td>
<td>1</td>
<td>Krystal 2 x 6mm, TC26</td>
</tr>
<tr>
<td>D1</td>
<td>BAT43</td>
<td>1</td>
<td>Shottkyho dioda SMD</td>
</tr>
<tr>
<td>IO1</td>
<td>7805</td>
<td>1</td>
<td>Regulátor napětí 5V, TO220</td>
</tr>
<tr>
<td>IO2</td>
<td>A244D</td>
<td>1</td>
<td>Přijímač AM signalů do 30MHz</td>
</tr>
<tr>
<td>IO3</td>
<td>MC33502P</td>
<td>1</td>
<td>Operační zesilovač</td>
</tr>
<tr>
<td>Konектор</td>
<td>4 pinový</td>
<td>1</td>
<td>PSH, RM = 2,54mm</td>
</tr>
<tr>
<td>Patice</td>
<td>DIL08, DIL16</td>
<td>2</td>
<td>Precizní</td>
</tr>
</tbody>
</table>
Příloha 5- Naměřené charakteristiky

*Obrázek 28:* Spektrum signálu na výstupu anténního předzesilovače

*Obrázek 29:* Spektrum signálu na invertujícím vstupu komparátoru (vývod 2)
Obrázek 30: Průběh obdélníkového signálu na výstupu přijímače

Příloha 6- Fotografie realizovaného zařízení

Obrázek 31: Antenní předzesilovač

Obrázek 32: Přijímač
Obrázek 33: Kapacita kondenzátorů C12 a C14 v sérii = 1,1p. Charakteristika zobrazuje rozmitání této hodnoty o ±50% na krystalovém filtru.