Oponentní posudek
na doktorskou disertační práci Ing. Štěpána Bohuše s názvem „Vývoj nových druhů plynotěsných a vodotěsných povrchových úprav“

Aktuálnost tématu a cíle disertační práce

Aktuálnost tématu disertační práce spočívá v možnosti využití krystalizujících hmot, které slouží k ochraně betonu před působením agresivních látek z okolního prostředí, pro betony, v nichž je část portlandského cementu nahrazena reaktivními druhotnými surovinami. To má význam technický, ekonomický, a také ekologický.

Cílem disertační práce byl, na základě experimentů, výběr optimální receptury hydroizolačního a plynotěsného nátěru a stěrky s obsahem krystalizujících solí s příměsí druhotných surovin, částečně nahrazujících portlandský cement. Cíle jsou uvedeny v samostatné kapitole, ale jsou popsány jako souhrn provedené práce, nikoliv jako předem vytčený cíl.

Postup řešení problému a výsledky disertační práce

Disertační práce je sepsána na 181 stranách, je rozdělena na část shrnující dosavadní známé poznatky o krystalizujících solích a jejich účincích ve struktuře betonu, o mikrostruktuře cementového tmelu v betonu, pórech i trhlinách, o transportních procesech v betonu, zejména difuzi. Pozornost je také věnována principům degradace betonu a ocelové výzvuže vlivem působení různých agresivních látek.

Na začátku experimentální části je podrobně rozpracována metodika práce, která je rozdělena do tří etap. Je uveden postup řešení a jsou vyjmenovány jednotlivé použité metody, a dále je uvedena charakteristika vstupních surovin. Postup řešení jednotlivých etap je graficky znázorněn v přehledných blokových schématech, které srozumitelně uvádí členění do studované problematiky.

V Etapě I je návrh receptur hydroizolačních nátěrů a stěrek a základní receptury pro podkladní beton. Celkem je uvedeno 24 směsí s krystalizující přísadou, u nichž byly stanoveny základní vlastnosti – zpracovatelnost při nanášení na povrch betonu, nestěkavost, závislost aplikovatelnosti na teplotě, kromě toho byl podrobně charakterizován podkladní beton. Zhodnocením výsledků, byly vybrány 3 směsi na polymericementové bázi a 3 na cementové bázi.
V Etapě II byla prověřována funkčnost krystalizujících přísady ve vybraných korozních prostředících, ve vlhkém prostředí a reálném exteriérovém prostředí, v nichž byly vzorky uloženy po dobu 3, 6, 12 a 18 měsíců. Poté se zkoušela nasákavost, vzduchová propustnost, kapilární vzdušavost a hloubka průsahu. Současně byl testován beton pod náterem, nebo stěrkou, a to v tlaku a příčném tahu, a dále byla zkoušena přidržnost nanesené vrstvy odtrhovou zkouškou. Na základě výsledků Etapy II byla provedena optimalizace výběru receptury nátěru a stěrky.

V Etapě III je prezentována podrobná analýza vývoje mikrostruktury, která je snímkována elektronovým mikroskopem v čase, a to jak u vzorků uložených v kapalných korozních prostředících, tak i v plynných korozních prostředících. Vzniklé novotvary jsou podrobně popsány a je diskutován vliv na účinnost krystalizujících solí ve vztahu k odolnosti betonu s nátěrem či stěrkou proti korozii v daných prostředících.

V závěru práce je vedena rozsáhlá diskuse o funkčnosti přísady ve vztahu k její účinnosti, která se odvozuje z tvorby krystalů v pórovém systému betonu, a jsou uvedeny závěry z dosažených výsledků.

Význam výsledků rozvoj vědního oboru a pro praxi
Doktorand obohatil vědní obor o studium mikrostruktury při působení přísad, které vedou ke krystalizaci solí v pórovém systému betonu, a to pro beton s částečnou náhradou cementu reagujícími příměsami, i pro polymerbeton.

Velký význam má disertační práce pro stavební praxi. Významná je kombinovatelnost krystalizujících přísad s druhotnými surovinami, které mají pucolánové nebo hydraulické vlastnosti a jsou schopny částečně nahradit cement v betonu. Bylo dokázáno, že krystalizující soli způsobují vodonepropustnost betonu a zvyšují odolnost betonu proti působení agresivních látek, a to jak kapalných, tak plynných. Dáležitý pozor je také možnost tvorby vlásečnicových krystalů v povrchových trhlinách betonu do šířky 0,05 mm, čímž dojde k jejich překlenutí.

Formální úprava disertační práce a jazyková úroveň
Teoretická i experimentální část disertační práce jsou zpracovány s logickým sledem na sebe navazujících kapitol. Práce má dobrou grafickou úroveň, výsledky experimentální práce jsou zpracovány do přehledných tabulek a grafů, mikrostruktura je dokumentována kvalitními snímky z elektronového mikroskopu. Literární odkazy jsou uvedeny v souladu s normou ISO 690-2011 Informace a dokumentace - Pravidla pro bibliografické odkazy a citace informačních zdrojů. Disertační práce je sepsána dobrým slohem, bez závažných gramatických chyb, byly zaznamenány jen drobné překlepy.

Dotazy k disertační práci

- Domnívá se doktorand, že vysvětlení funkce podle lit. [44] je reálné? Je možné, aby v betonu byly přítomny volné křemičité ionty – SiO$_2^-$, SiO$_4^{4-}$, Si$_2$O$_7^{6-}$, když je v pórovém roztoku hydroxid vápenatý?

- Proč byly použity dvě koncentrace CO$_2$? Jak bylo vytvořeno prostředí o 98% koncentraci CO$_2$ a jak byla tato koncentrace měřena?
• V práci byla provedena analýza EDAX sondou krystalů, dodatečně vytvořených v pórech betonu. Proč nebyl učiněn pokus o jejich vyhodnocení?

Závěr

Závěrem konstatuji, že doktorand ve své disertační práci jednoznačně prokázal systematický vědecký přístup k řešené problematice. Disertační práce splňuje obecné požadavky na obsah a formu. Získané výsledky mohou být s úspěchem využity v technické praxi.

Na základě uvedených skutečností doporučuji, aby Ing. Štěpán Bohuš byl připuštěn k obhajobě disertační práce a po jejím úspěšném obhájení mu byl podle zákona č. 111/1998 Sb. a ve znění dalších předpisů příznán titul Ph.D.

V Brně 25. 11. 2013

[Podpisek]