Broadband SHF Direction-Finder

Sergey RADIONOV1, Igor IVANCHENKO1, Alexey KOROLEV2, Nina POPENKO1

1Usikov Inst. for Radiophysics and Electronics, National Academy of Sciences of Ukraine
12 Ak. Proskura St., Kharkov, 61085, Ukraine
2Inst. of Radioastronomy, National Academy of Sciences of Ukraine, 4 Krasnoznamennaya st., 61085, Kharkov, Ukraine
buran@ire.kharkov.ua

Abstract. The original design of the compact broadband direction-finder is presented in this paper. The cylindrical monopole antenna serves as a primary source of the reflector-type antenna. “Zero-amplitude” technique is used for bearing the SHF sources. The model experiments with the proposed direction-finder prototype in the frequency band 6 GHz – 11 GHz have been carried out.

Keywords
Mobile communication, direction-finder, antenna measurement, antenna radiation pattern, “zero-amplitude” technique.

1. Introduction

Nowadays the radio systems operating at frequencies higher than 1GHz are widely used. The advancement to the state-of-the-art backbone links such as WiMAX standards-based technology compels moving to the higher frequencies up to 66 GHz that will allow one to deliver capacity of up to 40 Mbps per channel, for fixed and portable access applications. With these remarks in mind, the source location problem should be overcome. The numerous approaches and techniques are known for detecting, identifying and classifying various types of disturbance sources [1]-[6]. Nevertheless, the compact broadband mobile direction-finders with high-rapid rates are required.

In this paper we present the reflector antenna for the compact X-band direction-finder and the results of model experiments.

2. Design and Optimization of the Reflector Antenna

Schematic view of the novel reflector antenna as the element of the direction-finder system is shown in Fig.1. This antenna consists of the main reflector and the primary source as the cylindrical monopole antenna located in the main reflector focus.
pole antenna. The measurements were performed by means of the methods, facilities and special probe described in [8].

In the framework of these investigations some regularity in the near-field distributions have been determined for the fixed monopole height, namely: (i) the ground plane reduction results in the wave-beam narrowing and EM field power increasing outside the ground plane; (ii) the distance between the amplitude maxima in the near-field distributions increases with the ground plane radius increase. Such behavior of the EM field in the “radiating” region leads to the changes in the radiation patterns. For example, the near-field distributions and the radiation patterns of antenna with the monopole height \(h = 7.5 \text{ mm} \) are shown in Figs. 3 and 4. Thick solid lines at the bottom of pictures in Fig. 3 show the ground plane size of the monopole antenna. As one sees from Fig. 4, there are different shapes of radiation patterns depending on the ground plane size. At that, with the ground plane radius increase the beamwidth increases, too. From the measurements of near-fields and radiation patterns we may conclude that the EM field distributions of the monopole antenna with parameters \(h = 7.5 \text{ mm}, R = 15 \text{ mm} \) (Fig. 3b and 4b) is the most acceptable one since, on one hand, the wave beam is wide enough for the effective illumination of the main reflector. On the other hand, the ground plane size is small from the feed blockage of the main reflector point of view.

Based on the experimental results noted above we have carried out the simulations of radiation patterns of the reflector antenna with a primary source as the monopole antenna with a monopole height \(h = 7.5 \text{ mm} \), \(R = 15 \text{ mm} \), the focal length of the parabolic main reflector \(D = 55 \text{ mm} \) and the aperture radius of the main reflector \(a = 80 \text{ mm} \). The calculated radiation pattern of reflector antenna shows a high level of the side lobes (Tab. 1, Fig. 5a).

Therefore the computational modeling of the reflector antenna with parameters changed in the limits: \(7.5 \text{ mm} < h < 22.5 \text{ mm}, 7.5 \text{ mm} < R < 22.5 \text{ mm}, 50 \text{ mm} < a < 100 \text{ mm}, \) and \(40 \text{ mm} < D < 60 \text{ mm} \) was carried out. As a result of investigations noted above, the following optimal parameters of the reflector antenna were chosen, namely: the aperture radius of the main reflector is \(a = 80 \text{ mm} \), the monopole height \(h = 22.5 \text{ mm} \), the ground plane radius \(R = 22.5 \text{ mm} \), the focal length of the parabolic main reflector \(D = 55 \text{ mm} \). As can be seen from Fig. 5b and Tab. 1, the calculated radiation pattern of the reflector antenna with optimal geometric parameters produces the radiation pattern with the low level of the first side lobe.
Tab. 1. The characteristics of reflector antennas with different parameters.

<table>
<thead>
<tr>
<th>h, R, (mm)</th>
<th>∆θ (degree)</th>
<th>∆θ' (degree)</th>
<th>Side lobe level (dB)</th>
<th>Gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5, 15</td>
<td>9</td>
<td>1.5</td>
<td>-15</td>
<td>16</td>
</tr>
<tr>
<td>22.5, 22.5</td>
<td>10</td>
<td>1.5</td>
<td>-21</td>
<td>18</td>
</tr>
<tr>
<td>Experiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.5, 22.5</td>
<td>7</td>
<td>1.5</td>
<td>-19</td>
<td>17</td>
</tr>
</tbody>
</table>

Fig. 5. Calculated radiation patterns of the reflector antennas with non optimal (a) and optimal (b) parameters.

The reflector antenna prototype with optimal geometrical parameters has been manufactured. The radiation patterns of reflector antenna prototype were measured in the sweep mode of the SHF oscillator [9] that allows one to analyze quickly the radiation pattern behavior in the limits of antenna bandwidth.

With the aim to study the process of radiation shaping of the reflector antenna and to choose the optimal dimensions of the supporting antenna elements, as well as their mutual arrangement, we have carried out the simulations and measurements of EM field distributions in the radiating region of the reflector antenna prototype. The near-field distributions measured at the frequency $f=10 \text{ GHz}$ are shown in Fig.7a for the optimized direction-finder antenna prototype. As one sees from this picture one has the main lobe and the weak side lobe with a power level around -15 dB.

Computational modeling of the near-field distribution at the same frequency $f=10 \text{ GHz}$ (Fig. 7b) points out a qualitative agreement with the experiment. However, the calculated side lobe level is a little lower (around -20 dB). Notice, that the power signal ratio in the antenna axis and in the main lobe maximum is less than -20 dB. At that the important characteristic of antenna from the point of view of its applying as a direction-finder antenna is the angle $\Delta\theta$. This angle determines the antenna position in which the signal increases on 3 dB in comparison with the minimal one. For the antenna prototype this angle is small that allows us to expect high space resolution of the proposed direction-finder.

Fig. 6. Measured radiation pattern at $f=10 \text{ GHz}$ (a) and VSWR (b) of the direction-finder antenna prototype: $h=22.5 \text{ mm}, R=22.5 \text{ mm}, D=55 \text{ mm}, a=80 \text{ mm}$.
3. Direction-Finder Prototype

In order to realize the reflector antenna operation in the received mode we have integrated the one-stage HEMT based amplifier in the input antenna circuit. The conceptual block-diagram of the direction-finder system is shown in Fig. 8. The signal received from the SHF source goes into the low-noise amplifier for the signal pre-amplification within the antenna bandwidth. Next logarithmic amplifier realizes the signal amplification to the level to be quite enough for the effective ultra wideband video detector operation \((U=1 \text{ mV})\). The wideband low-noise video amplifier with a small integration time constant \((\tau=0.1 \text{ – } 1 \text{ microseconds for the choice})\) increases the signal up to the level required to the stable flash encoder operation (around 2.5 V). After video-amplifier the signal enters the interface and then on the working board of the control unit. The photo of the control unit is shown in Fig. 9.

There are two operating modes of the direction-finder, namely: (i) first, the rough determination of the source location on the maximum level of the received signal (so-called the “search mode”); (ii) second, the accurate determination of the source location on the global minimum of the received signal (so-called the “bearing mode”). In this case the arrangement of the light-emitting diodes on the working board of the control unit in the shape of V-symbol simulates the aforementioned bearing algorithm (Fig. 10).

4. Model Experiments

We have carried out the model experiments on the SHF source bearing by means of the aforementioned direction-finder prototype. The open-ended X-band waveguide was located at the distance of 20 m from the direction-finder. We measured the angular dependences of the received signal power in the frequency band 6 to 11 GHz. Based on the analysis of experimental angular dependencies, which have been found to be similar to those depicted in Fig. 10, we can pronounce that in the examined frequency band the power signal ratio in the antenna axis and in the main lobe maximum do not exceed -20 dB. The measurement results allow one to determine the accuracy of the source bearing approximate 2 degree.
5. Conclusions

A novel design of the compact broadband direction-finder is presented. We have optimized the geometric parameters of the reflector antenna for its effective utilizing as a direction-finder antenna. The good matching of the reflector antenna to 50 Ohm feeding line has been achieved in the antenna bandwidth 6 GHz – 11 GHz. The results of simulations and model experiments demonstrate the capability and benefits of the proposed direction-finder.

References

About Authors

Sergey RADIONOV was born in Pervomayskiy, Ukraine, in 1984. In June 2007 he graduated from the Kharkov National University and received the MS degree in Radio-physics. From 2007 to the present he works as engineer at the Institute for Radiophysics & Electronics of the National Academy of Sciences of Ukraine (IRE NASU). He has authored and co-authored 3 publications in the antenna field. S. Radionov is a Member of IEEE.

Alexey KOROLEV was born in Kharkov, Ukraine, in 1959. In June 1981 he graduated from the Kharkov State University and received the MS degree in Radio-physics. From 1981 to the present he works at the Institute for Radio-astronomy of the National Academy of Sciences of Ukraine (IRA NASU). He received the Ph.D degree in Physics of devices, elements, and systems in 2005. From 2005 he is a Senior Researcher with the Department of Millimeter Waves of Radioastronomy in the IRA NASU. He has authored and co-authored more than 40 publications in the fields of low-noise microwave devices, high sensitive receivers and radiometers, micro - and millimeter wave antennas.

Igor IVANCHENKO was born in Kharkov, Ukraine, in 1952. In June 1975 he graduated from the Kharkov State University and received the MS degree in Radio-physics. From 1975 to the present he works at the Institute for Radio-physics & Electronics of the National Academy of Sciences of Ukraine (IRE NASU). He received the Ph.D and D.Sc. degrees in Radio-physics in 1980 and 1997, respectively. From 1984 he is a Senior Researcher with the Department of Radio-Spectroscopy in the IRE NASU. He has authored and co-authored more than 100 publications in the fields of low-temperature radio-spectroscopy, semiconductor physics, antennas. He is currently the Head of the Laboratory of High Frequency Technology at IRE NASU. Prof. I. Ivanchenko is a Senior Member of IEEE.

Nina POPENKO was born in Gadyach, Ukraine, in 1948. In June 1971 she graduated from the Kharkov Institute of Radioelectronics and received the MS degree in Radiotechnik. From 1971 to the present he works at the Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine (IRE NASU). He received the Ph.D and D.Sc. degrees in Radio-physics in 1981 and 1998, respectively. From 2007 she is a Leading Researcher with the Department of Radio-Spectroscopy in the IRE NASU. She has authored and co-authored more than 120 publications in the fields of low-temperature magnetic radio-spectroscopy, semiconductor physics, and antennas design. Prof. N. Popenko is a Senior Member of IEEE, and Member of EuMa.