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Abstrakt 

Pr§ce se zabĨv§ popisem nov®ho stochastick®ho v²cekriteri§ln²ho optimalizaļn²ho 

algoritmu MOSOMA (Multiobjective Self-Organizing Migrating Algorithm). Je zde 

uk§z§no, ģe algoritmus je schopen Śeġit nejrŢznŊjġ² typy optimalizaļn²ch ¼loh (s 

jakĨmkoli poļtem krit®ri², s i bez omezujících podmínek, se spojitým i diskrétním 

stavovým prostorem). Výsledky algoritmu jsou srovnány s dalġ²mi bŊģnŊ pouģ²vanĨmi 

metodami pro vícekriteriální optimalizaci na velké sadŊ testovac²ch ¼loh. Uvedli jsme 

novou techniku pro vĨpoļet metriky rozprostŚen² (spread) zaloģen® na hled§n² 

minimální kostry grafu (Minimum Spanning Tree) pro problémy mající v²ce neģ dvŊ 

kritéria. Doporuļen® hodnoty pro parametry Ś²d²c² bŊh algoritmu byly urļeny na z§kladŊ 

vĨsledkŢ jejich citlivostní analýzy. Algoritmus MOSOMA je d§le ¼spŊġnŊ pouģit pro 

Śeġen² rŢznĨch n§vrhovĨch ¼loh z oblasti elektromagnetismu (návrh Yagi-Uda antény a 

dielektrickĨch filtrŢ, adaptivn² Ś²zen² vyzaŚovan®ho svazku v ļasov® oblastié).  

Kl²ļov§ slova 

Vícekriteriální optimalizace, samo organizující se migrace, MOSOMA. 

 



 

 

 

Abstract 

This thesis describes a novel stochastic multi-objective optimization algorithm called 

MOSOMA (Multi-Objective Self-Organizing Migrating Algorithm). It is shown that 

MOSOMA is able to solve various types of multi-objective optimization problems (with 

any number of objectives, unconstrained or constrained problems, with continuous or 

discrete decision space). The efficiency of MOSOMA is compared with other 

commonly used optimization techniques on a large suite of test problems. The new 

procedure based on finding of minimum spanning tree for computing the spread metric 

for problems with more than two objectives is proposed. Recommended values of 

parameters controlling the run of MOSOMA are derived according to their sensitivity 

analysis. The ability of MOSOMA to solve real-life problems from electromagnetics is 

shown in a few examples (Yagi-Uda and dielectric filters design, adaptive beam 

forming in time domainé).  

Keywords 

Multi -objective optimization, self-organizing migrating algorithm, MOSOMA. 
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1 Introduction 

1.1 Multi-objective Optimization 

Optimization takes place in almost every engineering discipline. Optimization is 

a process of finding and comparing feasible solutions until the best solution is assigned. 

The quality of the solution can be measured by the value of an objective (fitness, cost) 

function. The objective function expresses requirements on the solution in terms of e.g. 

reliability, price, dimensions of the final product, efficiency of a manufacturing process 

etc. 

Intuitively, most of the real world problems consider more than one objective. 

These objectives can be either corresponding or conflicting. In the first case 

the optimization results in one solution, which is optimal from the viewpoint of all 

objectives. Considering conflicting objectives optimization leads to a set of solutions. In 

this case ñoptimalò solutions represent the trade-off among all objectives. 

This set builds in the space of objective functions in the so-called Pareto front 

named after an Italian economist Vilfredo Pareto (1848 - 1923) who dealt with 

conflicting objectives in his works about economic efficiency and redistribution of 

incomes. Members of the Pareto front have to satisfy the Pareto efficiency: 

improvement of the solution in one objective has to lead to deterioration in quality of all 

other objectives. 

This phenomenon can be easily explained by using the following example from 

everyday life. When someone travels somewhere, there exist several options to choose: 

a plane, a car, a bus, a bike etc. Every vehicle has its own traveling time and price. 

When someone wants to optimize his travel considering both these objectives, Pareto 

front from Fig. 1.1 can be very helpful for him. It is obvious that using a plane is 

the fastest option. Therefore, a plane is the best choice from the viewpoint of traveling 

time. On the contrary, using a bike is the cheapest way so it is optimal from 

the viewpoint of the amount of spent money. Travelling by bus or driving your own car 

are the trade-off solutions. But no vehicle beats the other in both objectives. 

A designer has two possibilities of choosing the final solution of the multi-

objective optimization problem. The first one is to assign a priori importance to every 

objective, compose an aggregate fitness function and solve the problem as a single-

objective one using well-known stochastic single-objective algorithms. This approach 

assumes that the user knows some extra information about the optimized problem. 

The trade-off is made with no information about the shape of the Pareto front.  

Since it is very difficult to estimate the shape of the Pareto front a priori another 

way of choosing the final solution can be beneficial. First, the whole Pareto front is 

obtained and then, trade-off among all objectives is made according to the shape of 

the Pareto front.  
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Fig. 1.1: Choosing a vehicle according to traveling time and price. 

The first intuitive way how to obtain the Pareto front is to run the single-objective 

optimizers several times with different settings of importance for individual objectives. 

Although a great effort was devoted to the development of these methods during 

the second half of the 20
th
 century some shortcomings lead to the development of 

ñpureò multi-objective optimizers which look for the Pareto efficiency during 

the optimization process. 

It is obvious that an efficient multi-objective optimizer can also be 

advantageously used in the design of electromagnetic structures in cooperation with 

suitable analysis tools e.g. a full wave solver, antenna design tool, etc. 

1.2 Survey of Previous Work 

This thesis implements a relatively new stochastic Self-Organizing Migrating Algorithm 

(SOMA) [1] for multi-objective optimization of electromagnetic components. 

An original Multi -Objective Self Organizing Migrating Algorithm (MOSOMA) is 

derived. Multi-objective optimization has its own rules that are slightly different from 

those known from conventional optimization. 

Multi-objective optimization is a relatively young part of evolutionary 

optimization. The importance and topicality can be proven by the furious growth of 

the number of books, journals and conference papers published per year during the last 

two decades. Data from years 1990 to 2010 taken from [2] are depicted in Fig. 1.2. It 

seems that the growth reached its peak in the year 2009. 

The first attempts to use stochastic optimization algorithms in electromagnetics 

are dated back to the last decade of the 20
th
 century [3], [4]. These methods are usually 

based on evolution (e.g. Genetic Algorithms [5]) or swarm cooperation (e.g. Particle 

Swarm Optimization [6]). They are very attractive, because their use is relatively 

simple. They can be implemented with basic knowledge of programming and 

mathematics. In fact, the only problematic task for a designer is to define the objective 

functions properly. 
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Fig. 1.2: Number of multi-objective optimization references per year from 1990 to 

2010. 

Nowadays, almost every efficient optimization approach has its own multi-

objective variant. These extended versions treat problems of conventional methods 

transforming a multi-objective problem into a single objective one (see Appendix 1). 

Generalized algorithms are then able to solve problems having any number of objective 

functions. Just a few generalized approaches are mentioned here: e.g. Non-dominated 

Sorting Genetic Algorithm-II  (NSGA-II) for genetic algorithms [7], Generalized 

Differential Evolution (GDE3) for differential evolution [8], Multi -Objective Particle 

Swarm Optimization (MOPSO) for particle swarm optimization [9] etc. 

Our novel MOSOMA is an extension of the original algorithm SOMA that was 

introduced in 2000 by Ivan Zelinka in [1] and shows very good performance on many 

various single-objective problems. Although the author states in [10] that his algorithm 

is able to solve MOOPs it is not fully true. The only implementations of SOMA [10] 

that solved multi-objective problems used the conventional methods that transform 

a multi-objective problem into a single-objective one (SOOP).  

Since stochastic multi-objective optimization is a relatively new discipline, 

principles necessary for properly understanding the development and functionality of 

our novel algorithm are briefly introduced in this chapter. Also, the principles of SOMA 

and its applications are briefly described. Most of the properties discussed in the 

following subchapters are summarized in [PK 5]. Finally, the main objectives of this 

Ph.D. thesis are formulated at the end of the first chapter. 

1.2.1 Properties of MOOP 

Generally, multi-objective optimization problem (MOOP) deals with a finite number of 

objective functions that should be either minimized or maximized. The maximization 

problem can be simple converted to the minimization problem multiplying the objective 

function by -1. Therefore, in the next parts of this text only minimization problems are 

considered. The MOOP can be simply described with the equation: 
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where M denotes number of objectives, N denotes number of decision variables, x 

stands for vector of decision variables for individual solutions and xmin and xmax are 

lower and upper bounds of the decision space variables respectively, J stands for 

number of constraints g. The transformation from a decision space of the input variables 

into an objective space of the two-variable two-objective problem is depicted in 

Fig. 1.3. 

   

Fig. 1.3: The transformation from the decision space (left), to the objective space 

(right) of the optimization problem. 

As mentioned before, multi-objective optimization works with two spaces. First 

one is the N-dimensional decision space of input variables where every point in 

the feasible region is the state vector x. Second one is the M-dimensional objective 

space. Every state vector x is here ñevaluatedò with values of all objective functions fm. 

Mapping between these two spaces is often non-linear. It is important to know, that 

the properties of these two spaces are not similar. For example, two state vectors having 

minimal distance in the decision space can have very long distance in the objective 

space. The search for a solution takes place in the decision space and is controlled by 

information from the objective space. This is very difficult because the controlling 

mechanism of an algorithm must be independent on the mapping between both 

the spaces. 

The set P
*
 of state vectors x is the solution of the multi-objective problem. This 

solution can be depicted in the decision or objective space as shown in Fig. 1.3. All 

members (solutions) from set P
*
 build in the objective space so called Pareto front. 

Generally, number of Pareto optimal solutions is from interval |P
*
|  ɴộ1; Ð). Size of 

the P
*
depends on the relation between the objectives. If objectives are conflicting, then 

there are more than one Pareto optimal solutions |P
*
| >  1. If all objectives are 
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corresponding, then there is only one optimal solution. These two cases are illustrated in 

Fig. 1.4. 

Generally, solution of the M-dimensional problem is (M ï 1)-dimensional 

hypervolume. For example solution of the two-objective problem is the curved line, 

solution of the three-objective problem is curved surface and solution of the four-

objective problem is curved volume etc. 

Knowing all Pareto front members helps the designer to choose the final solution. 

Usually, the final solution is chosen according to the shape of the found Pareto front. 

There are several types of Pareto front: convex, non-convex, continuous and 

discontinuous. All four types are depicted in Fig. 1.5. As stated in subchapter 3.1.1 and 

in Appendix 1 some optimizers have problem to reveal non-convex parts of the Pareto 

front.  

Pareto front is built by infinite number of members in most cases. Obviously, it is 

not possible to found all these solutions in everyday life. Therefore, most of 

the optimizers works so, that user sets number of Pareto-optimal solutions that should 

be found.  

 

Fig. 1.4: Objective space with conflicting (left) and corresponding (right) 

objectives. 

The finite number of wanted solutions brings a necessity to found solutions that 

are equidistantly spaced and cover the whole Pareto front. The difference between 

the bad and good solution can be seen in Fig. 1.6. Although all blue solutions from 

Fig. 1.6 are located exactly on the true Pareto front, they cover only few parts of 

the front. On the other side, the distance between every two consecutive solutions from 

the red set is always the same. This characteristic is crucial for every multi-objective 

optimizer. The applied searching strategy in the objective space has to consider 

the necessity to find solutions with good spread. 

New techniques for ñpureò multi-objective optimizers were developed especially 

during the last decade of the 20
th
 century. Here, only the most important techniques 

from the viewpoint of our proposed optimizer will be explained. 
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Fig. 1.5: Types of Pareto front: convex (left), non-convex (right) and discontinuous 

(left). 

 

Fig. 1.6: The difference between solutions with good and bad spread. 

1.2.2 Principle of Dominance 

Almost every stochastic multi-objective optimizer that searches for the Pareto optimal 

set involves a principle of dominance. It compares two solutions and tries to decide, if 

one dominates the other or both are non-dominated. It is defined [11]: 

Solution x1 is said to dominate the other solution x2, if both conditions 1 and 2 

are true: 

1. Solution x1 is no worse than x2 in all objectives. 

2. Solution x1 is strictly better than x2 in at least one objective. 
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The principle of dominance can be clearly understandable from Fig. 1.7. The decision if 

some solution dominates the other takes place in the objective space. This figure depicts 

five solutions of the two-objective problem. The dashed lines mark out parts of 

the objective space that are dominated by the corresponding solution. In this specific 

case: solution x1 dominates solutions x2 and x3. Solution x5 is dominated by solution x4. 

Finally, solutions x1 and x4
 
are non-dominated. 

 

Fig. 1.7: Principle of dominance. 

It is obvious that if solution x1 dominates solution x2, then solution x1 is better. 

Having minimization problem, values of all objective functions for solution x1 are lower 

than for solution x2. If two solutions are non-dominated, it cannot be decided, which one 

is better. 

It is good to notice that any solution does not dominate itself. This is caused by 

the second condition in the definition of the dominance principle. This property has to 

be considered when designing a multi-objective optimizer. The set of solutions cannot 

contain the same solutions when it is compared according to principle of dominance. 

Next property of the dominance principle that can speed up the whole process is 

the transitiveness of the dominance relation. It means that if x1 dominates x2 and x2 

dominates x3, then x3 is dominated by x1. On the contrary, if solution x1 does not 

dominate x2, it does not imply that x2 dominates x1. 

1.2.3 Non-dominated Sorting 

This procedure assigns the set of non-dominated solutions P from the set of all 

researched solutions Q. The non-dominated set can be defined [11]: 
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The non-dominated set P consists of solutions from Q, which are not 

dominated by any member of set Q. 

If set Q covers the entire search space, then P becomes the true Pareto optimal set 

of solutions P
*
. Other words, P has to create the Pareto front because it dominates all 

other solutions from Q. For example in Fig. 1.7 the researched solutions build set 

Q = { x1, x2, é, x5} and non-dominated set P is built by only two solutions only P = {  

x1, x4}.  

As can be seen in Fig. 1.8 set Q can be sorted into the advancing fronts. All 

members of the front of the second level are dominated by members of first level front. 

And all members of the third level front are dominated by members of previous fronts 

etc. The advancing fronts are in fact local optima of our optimized problem. 

 

Fig. 1.8: Sorting of population into fronts of different level [14]. 

 

Fig. 1.9: Pseudo-code of the naïve algorithm for assigning the non-dominated set. 

Almost every pure MOEA exploits the non-dominated sorting to choose the best 

solutions from the researched set. Usually, this procedure is repeated in every iteration 

loop of those algorithms. Therefore, it is important to found the non-dominated 

solutions P as fast as possible. 
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  End 

 End 

End 
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The naïve approach is to compare every solution from set Q with all other 

solutions on dominance. The pseudo-code of this approach is depicted in Fig. 1.9. It is 

obvious that this approach is unnecessarily time consuming. 

One of the possible improvements brings the algorithm described in [11]. It works 

with continuously updated set of non-dominated solutions P. It employs a better 

bookkeeping of solutions that were checked for dominance. Every consecutive solution 

xq is compared with all solutions in current P. If this solution dominates any member of 

P, then that dominated solution is deleted from P. If solution xq is dominated by any 

member of current P, then it is ignored. If the q-th solution is not dominated by any 

member of P, then it is entered in P. When all solutions from the population are 

checked, P becomes the non-dominated set of researched set Q. 

Efficiency of this approach influences positively speed of the whole optimization 

process. The principle of this approach can be clearly understandable from pseudo-code 

in Fig. 1.10. If repeated, this approach can sort all Q solutions in consecutive fronts. 

Advancing fronts can be used to enhance diversity of found set P. 

 

Fig. 1.10: Pseudo-code of the continuously updated algorithm for assigning the non-

dominated set.  

1.2.4 Crowding and Fitness Sharing 

The crowding approach was introduced in [15] and it tries to emphasize the solutions 

from current population that are less crowded in the objective space to preserve 

the diversity among the resulting Pareto optimal set found by the optimizer.   

The concept of crowding can be replenished with the fitness sharing technique 

introduced in [16]. All members of currently found non-dominated set are assigned with 

another shared fitness fsh. The less crowded members within one front have higher value 

of the fsh. It is ensured that the worst member of the front of lower level has higher fsh 

value than the member of the next front. 

One of the most commonly used techniques for determination of fsh values is so 

called niching [17]. The niche count is computed for every candidate for Pareto optimal 

set according to its distance to other solutions. This distance is taken into account only 

if it is lower than sshare value specified by user. Although some recommendations are 

Start 

 Insert x1 from Q to P 

 For q = 2 : |Q| 

  insert = 1 

  For p = 1 : |P| 

   If xq dominates xp  

     Delete xp from P 

   End 

   If xp dominates xq 

     insert = 0 

     Break incrementation p 

   End 

  End 

  If insert == 1 

   Insert xq to P 

  End 

 End 

End 
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given for fixing this value sshare, this setting is usually difficult and strongly influences 

the performance of the optimizer. 

Another approach described in [7] makes away the necessity of determining 

the value sshare. It is called crowding distance measurement. First, members within one 

front are sorted according to one objective. Then, the density of solutions surrounding 

every member of the front is computed from the Euclidian distance to the neighboring 

solutions. For the boundary solutions large crowding distance is set to save the found 

extreme solutions automatically. This technique gives preferential treatment to the less 

crowded solutions. 

 

Fig. 1.11: Crowding distance measurement [11]. 

The crowding distance is derived from the positions of the solutions in 

the objective space. First of all, the members of one front are sorted according to all 

the objectives fm. The vectors of sorted indices I m are found. The crowding distance c 

for each member of the front can be computed using the following equations [7]: 

( ) ( )m m

1

( ) ( )
M

m

m

c I i c I i
=

=ä  (1.2)A 

where 

( )
( ) ( )m m

m

,max ,min

( 1) ( 1)
( )

m m

m

m m

f I i f I i
c I i

f f

+ - -
=

-
 (1.3)A 

where Im(i) is the i-th index from the m-th vector of indices, fm,max and fm,min are 

the maximal and minimal values of the m-th objective in the current front, respectively. 

The value cm for these two extreme solutions is set to infinity. The crowding distance is 

the average side length of the cuboid defined by solutions surrounding a particular 
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solution (see Fig. 1.11). The less crowded solutions (with a higher value of c) are 

preferred in the rest of the algorithm. 

1.2.5 External Archive 

Lot of authors tried to turn profit of the Particle Swarm Optimization (PSO) search 

strategy also for multi-objective optimizers because of very good performance of this 

algorithm on single-objective problems. Comprehensive review of PSO multi-objective 

optimizers can be found in [9]. Because particles in the general PSO are attracted by 

the particle with best value of fitness function, plenty of approaches how to preserve 

diversity within the swarm were introduced during nineties of the 20
th
 century.  

The most interesting approach for our work is the use of so called external archive 

[18]. The external archive contains fixed number of so far found non-dominated 

solutions. This method introduces the elitism into the multi-objective PSO. All other 

particles then fly with a certain weight towards solutions in external archive. Different 

methods for selecting and removing the solutions from the external archive can be used 

to generate satisfactory approximation of the Pareto front. 

All optimizers using the principle of external archive have to be aware of 

the premature convergence. If all members of the eternal archive lie in the region of 

local optimum, they can attract all other members of the set Q to this region, while 

the exact solution can be somewhere else. As mentioned before, the distances between 

the solutions in the decision space and objective space are usually not in proportion. 

The local optimum can be for example the front of the higher level as the green line in 

Fig. 1.8. 

1.2.6 Self-Organizing Migrating Algorithm 

The Self-Organizing Migrating Algorithm (SOMA) is a relatively new stochastic 

optimization tool introduced by I. Zelinka and J. Lampinen in 2000 [1]. 

The comprehensive description and analysis of the algorithm performance was 

published in [10]. The algorithm is based on the self-organizing behavior of group of 

individuals called agents. Agents migrate in the N-dimensional hyperspace of optimized 

parameters to find the vector of input variables with best value of fitness function. 

The knowledge about the researched space is shared within the entire group of 

individuals. The run of SOMA can be described in following steps: 

Step 1: Defining controlling parameters of the algorithm. 

Step 2: Generating the initial population and evaluating the fitness 

function. 

Step 3: Migrating individuals, evaluating their new fitness values. 

Step 4: Testing for stopping condition. If no stopping condition is 

accomplished, go back to Step 3. 

Step 5: Assigning the solution.  

Each individual from population Q is defined by the N-dimensional state vector 

xq. Positions of individuals are for the initial population defined by the equation: 
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( ), min , max minq n n q n n nx x rnd x x= + -  (1.4)a 

where xq,n denotes the n-th variable of the q-th agent, ộxn,min; xnmaxἃ denotes the feasible 

interval for the n-th variable and rndq,n is a random number from the interval ộ0; 1ἃ with 

the uniform distribution of probability. The values of objective function fare evaluated 

for each individual. These values of objective functions are shared within the whole 

population. 

The iterative process of finding the global optimum consists of a given number of 

migration loops I. During a migration loop, individuals move as depicted in Fig. 1.12 

and Fig. 1.13 and appraise new positions in the researched decision space with values of 

the objective functions. 

 

Fig. 1.12: Principle of the migration using the ´All ToOne´ variant of SOMA. 

 

Fig. 1.13: Principle of the migration using the ´AllToAll´ variant of SOMA, 

different colors denotes different directions of the migration between two agents. 

There are several strategies to accomplish an efficient research of the decision 

space. In AllToOne variant, each individual migrates to the position of the leader from 
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the previous migration loop or to the position of the randomly chosen individual. This 

type of movement is depicted in Fig. 1.12. The term leader describes the position, where 

the best value of the objective function was achieved. The leader remains in the same 

position within a migration loop. 

In AllToAll variant, each individual moves towards all other agents as depicted in 

Fig. 1.13. This approach seems to be more computationally demanding than 

the previous one, but the convergence to the global optimum is usually faster [10]. This 

is caused by a more systematic research of the N-dimensional decision space and 

sharing the fitness values. 

Individuals can start the movement in each migration loop either from the initial 

positions defined by equation (1.4) or from the last best position found during previous 

migrations. Both approaches have their advantages and disadvantages. The first one 

usually reaches the global optimum but can have problems if the spread of the initial 

population does not cover all parts of the researched space satisfactorily. The second 

one exhibits a faster convergence usually, but tends to the premature convergence if 

the algorithm remains in a local optimum (all individuals move to the same part of 

the decision space). 

The movement of the individual xp towards the individual xq during the i-th 

migration loop is determined by: 

( ), ,( ) ( 1) ( 1) ( 1)p s p q p p s

s
i i i i PL

ST
= - + - - - Ö Ö Ötmp x x x PRTV  (1.5)a 

where tmpp,s is the vector specifying the new position of the p-th individual resulting 

from the s-th step of the movement to the q-th individual. ST defines the number of 

steps for one migration (s = 1, 2, é , ST). The parameter PL defines the length of 

the trajectory. If PL is equal to one, then the migration ends in the position of the q-th 

individual exactly. So called perturbation vector PRTV has the same size as the vector 

defining the position of an individual x and consists of zeros and ones. PRTV is defined 

for each migration by N randomly generated numbers: 

1 ( )
( )

0 ( )

if rnd n PR
n

if rnd n PR

>ë
=ì

¢í
PRTV  (1.6)a 

where PR denotes the probability of perturbation defined by user. The perturbation has 

the same effect for SOMA as the mutation for GA. If any part of PRTV is zero, then 

the trajectory of the migration does not head to the position of the q-th individual as 

depicted in Fig. 1.14. The perturbation approach should avoid the deadlock of 

the algorithm in the local optimum. 
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Fig. 1.14: Explanation of influencing migration by perturbation (´AllToOne´ 

variant, ST = 3, PL = 1.3) [PK 2]. 

Recommended values for parameters controlling the run of the algorithm can be 

found in [10]. The length of the path PL should be chosen from the interval ộ1.1; 3ἃ. 
The number of steps ST during one migration loop should be from the interval ộ3; 20ἃ, 
the probability of perturbation PR should be in the interval ộ0.1; 1.0ἃ, the number of 

agents Q is expected to be from the interval ộ10; up to userἃ, and the number of 

migration loops I is assumed to be from the interval ộ10; up to userἃ. The recommended 

intervals for these parameters are summarized in Tab. 1.1. 
 

Parameter Description Recommended interval 

PL Length of the path ộ1.1; 3ἃ 

ST Number of steps in one migration ộ3; 20ἃ 

PR Probability of perturbation ộ0.1; 1.0ἃ 

Q Number of agents ộ10; up to userἃ 

I Number of migration loops ộ10; up to userἃ 

Tab. 1.1: Recommended values for controlling parameters of SOMA algorithm 

[10]. 

The algorithm was successfully used on many real live problems. Some of them 

observed more than one objective. In every case, the multiple objectives were 

transformed into one single-objective function and optimized using basic single-

objective version of SOMA. 

In [1] SOMA was tested on plenty of test functions and compared with 

conventional evolutionary algorithms (DE, GA). It achieved at least comparable results 

with conventional algorithms. The article [21] deals with a convergence issues of 

the algorithm. The distributed version of SOMA is described in [22]. 

The proposed algorithm was in [23] successfully applied for finding of an optimal 

trace for a robot. The results obtained by SOMA were better than from method based on 
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simulated annealing. Authors in [24] employ SOMA for the optimization of the two-

dimensional Henon map deterministic chaos model control. In [25], SOMA is used for 

trimming an aircraft to the steady state flight upon the various flight conditions. SOMA 

was applied also for finding of optimal parameters of the vibrating power generator as 

described in [26]. The article [27] deals with a design of a Loney´s solenoid using 

the modified SOMA approach with the advance of so called normative knowledge that 

assigns regions in decision space with better values of fitness function. The paper [28] 

introduces a modified SOMA approach based on a Gaussian operator to solve 

the reliability-redundancy optimization problems. According to our knowledge, SOMA 

has been never used for solution of pure multi-objective optimization problems by other 

authors. 

1.3 Dissertation Objectives 

The most important objectives of this dissertation thesis can be summarized into 

the following list: 

¶ Creation of a new multi-objective technique based on self-organizing migration. 

¶ Study of convergence properties of the newly proposed algorithm. 

¶ Implementation of the proposed algorithm for solving of real-life design 

problems in electromagnetics.  

The most important objective of this dissertation thesis is to derive a new 

stochastic algorithm for solving multi-objective optimization problems based on 

the principles of the self-organizing migrating algorithm. The novel algorithm should be 

able to solve problems with an arbitrary number of input variables and objective 

functions. The algorithm should reveal the desired number of Pareto front members. 

These solutions should be as close as possible to the true Pareto front but also the claim 

on the diversity of solutions should be satisfied. 

The properties of the newly developed method have to be studied. The influence 

of the controlling parameters of the algorithm should be demonstrated. Our goal is to 

create an algorithm that reaches satisfactory results preferably independent of its own 

settings. Also, convergence properties of the algorithm should be studied. It has no 

sense to exploit a tool that does not ensure convergence to the correct answer. As 

described in [29] the behavior of convergence properties of the stochastic optimization 

algorithms can be described using the so-called finite Markov chains. 

The comparison of the newly originated algorithm with conventional methods 

(described in Appendix 1) should be done to substantiate the claim for the proposed 

multi-objective algorithm. The comparisons can be made on test problems with 

the well-known Pareto front. This enables to evaluate multi-objective metrics such as 

generational distance [13], spread [7] or hypervolume [30]. To maintain fairness of this 

comparison, conventional methods should be performed using the original SOMA. 

Furthermore, a comparative study with conventionally used ñpureò multi-

objective algorithms on bench-mark problems should be performed to show 

the accuracy of the proposed algorithm. Among accessible algorithms belongs e.g. 

NSGA-II (Non-dominated Sorting Algorithm II, [7]) and SPEA2 (Strength Pareto 

Evolutionary Algorithm 2. After convergence of the algorithm is proved satisfactorily, it 

can be applied to solve electromagnetic design problems. Two types of problems should 
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be considered: previously solved by other multi-objective techniques (so that results of 

MOSOMA can be compared) and newly defined unsolved problems. 
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2 MOSOMA 

This chapter introduces an original Multi -Objective Self-Organizing Migrating 

Algorithm (MOSOMA). As described in subchapter Appendix 1, transforming 

the MOOP into the SOOP and use of single-objective algorithm (e.g. SOMA [7]) is not 

efficient for solution of multi-objective optimization problems. The optimizer should be 

able to solve constrained or unconstrained MOOPs having any number of decision 

space variables N and objectives M. The algorithm should handle with multi-objective 

problems having convex, non-convex or discontinuous Pareto front. It should be able to 

work with continuous and discrete decision space also.  

2.1 Description of MOSOMA 

Our novel stochastic Multi-Objective Self Organizing Migrating Algorithm 

(MOSOMA) was introduced in [PK 2], the extension of MOSOMA for solving MOOPs 

having more than two objectives was then published in [PK 3].  

MOSOMA combines two basic principles: exploring the N-dimensional decision 

space defined in the original SOMA, and choosing the non-dominated set of individuals 

from the current population in M-dimensional objective space.  

The run of the algorithm can be described by the following steps: 

Step 1: Defining controlling parameters of the algorithm. 

Step 2: Generating the initial population, evaluating objective functions. 

Step 3: Choosing external archive from the current population. 

Step 4: Migrating agents to members of external archive. Evaluating 

objective functions for new positions. Updating the external archive. 

Selecting migrating agents for next migration loop. 

Step 5: Testing for stopping condition. If no stopping condition is 

accomplished, go back to Step 4. 

Step 6: Choosing final non-dominated set from the current external 

archive.  

The migration principle remains the same as in the case of the single-objective 

algorithm as described in subchapter 1.2.6. As the number of executed migration loops 

increases, agents explore the N-dimensional decision space more deeply. 

Migration of agents is steered by information about objective values of the agents. 

All agents share the external archive where the so far found non-dominated solutions 
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are stored. It ensures that all members of the population have an idea about the changes 

in the objectives within different parts of the decision space.  

The main idea of MOSOMA is illustrated in Fig. 2.1. The basic principle is to let 

the agents migrate towards members of the external archive. This procedure enforces 

the agents to scan regions with best values of objective functions from the viewpoint of 

all objectives more carefully. 

The general pseudo-code of the whole MOSOMA is depicted in Fig. 2.2. 

The whole procedure starts with random generation of a group of agents P(1) using 

equation (1.4). External archive members are selected according to non-dominated 

sorting procedure depicted in Fig. 1.10. In every migration loop, selected agents then 

migrate towards members of EXT(i ï 1) and their temporary locations tmp are 

determined by equation (1.5). Then, a new EXT(i) is built from the first non-dominated 

front solutions of non-dominated sorting of the union of EXT(i ï 1) with tmp. This step 

ensures some form of elitism. If the number of the first front solutions is lower than 

the minimal size specified by the user Nex,min, EXT(i) is completed with the best 

solutions from advancing fronts. Usually, the size of EXT grows significantly with 

every migration loop. 

 

Fig. 2.1: Main principle of the Multi -Objective Self-Organizing Migrating 

Algorithm [PK 2]. 

After a new external archive is determined, set of migrating agents T is 

determined. There are several options, how to select these agent: e.g. they can remain in 

the same positions as defined at the start of the algorithm, their positions can be chosen 

randomly for every iteration loop using equation (1.4), also some members of EXT can 

be chosen to T. According to our experience, it is suitable to fill T partly with randomly 

generated agents (the premature convergence to a local optimum - advancing front - can 

be suppressed) and with members of the external archive (the region of the best 

solutions is researched carefully which can speed up the whole procedure). 

Migration proceeds until a stepping condition is met. Since the number of 

solutions in the final set EXT is usually much higher than the number of wanted 
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solutions on the Pareto front Nexf, the final set P is chosen from EXT so that the found 

Pareto front is covered uniformly. 

 

Fig. 2.2: Pseudo-code of MOSOMA [PK 3]. 

The main parameters and complex procedures of the algorithm will be briefly 

described in the following sub-chapters. 

2.1.1 Controlling Parameters 

The user has to set the controlling parameters of MOSOMA before it is executed. 

Proper understanding of them is crucial for successful and efficient use of MOSOMA 

for optimization tasks. 

The controlling parameters are: 

FFC The number of fitness function computations. 

|P(1)| The initial population size. 

T The number of migrating agents. 

ST The number of steps in one migration. 

PL The relative length of path for one migration. 

PR The probability of perturbation. 

Nex,min The minimal size of the external archive. 

The influence of these controlling parameters on behavior of MOSOMA will be 

discussed in the following text. The recommended intervals are derived on behalf of 

their sensitivity analysis (please refer to subchapter 3.3).  

2.1.1.1 Initial Population Size 

The user sets with the parameter |P(1)| size of the initial population. According to our 

experience, it is better to generate larger initial population, because it is expedient to 

research whole decision space. The higher value of the parameter reduces speed of 

MOSOMA just for initial population. The speed of the algorithm is controlled by 

Start 

 Define initial population Q(1) 

 Compute objective functions in tmp 

 Find external archive EXT  

 While i < I | FFC < Nf,max | |EXT(i)| < Nex, max 

  For q = 1 : |Q(i - 1)| 

   xq
  
 migrates to all members of EXT(i - 1) 

   Compute objective functions in tmp 

  End 

  Find EXT(i) from tmp ẕ EXT(i - 1) 

  While |EXT(i)| < Nex, min 

   Find advancing front and crowding distance 

   Fill EXTi with best agents from advancing front 

  End 

  Choose T agents to Q(i) 

  i++  

 End 

 Chose final set P from EXT(i) 

End 
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number of migrating agents T and size of external archive |EXT| for consecutive 

migration loops. 

2.1.1.2 Number of Migrating Agents 

The parameter T has only one restriction, number of migrating agents has to be lower 

than the size of initial population: T < |P(1)|. With higher number of T, research of 

a decision space is more precise on one hand, but the speed of MOSOMA decreases on 

the other hand. It is appropriate to choose this value similar to size of final non-

dominated set |P|. The strategy for choosing the migrating agents influences efficiency 

of the algorithm more significantly. 

2.1.1.3 Parameters PL and ST 

Parameters PL and ST are adopted from original SOMA without any change. These two 

parameters cannot be set independently. They should be set so that any migration does 

not go through the position of the agent from EXT, which would cause redundant 

computation of objective functions in previously examined point of the decision space. 

The condition for setting PL and ST can be made according to equation (1.5): 

1, 1,2,...,
PL

s for s ST
ST
¸ " =  a (2.1)

The parameter PL should be chosen from interval ộ1.1; 3ἃ, but for higher values, 

agents can migrate out from the decision space. As indicated in Fig. 2.1, MOSOMA 

assumes that solutions closer to the true Pareto front lie close to positions of agents 

currently saved in EXT. Some of s-multiples of ratio between PL and ST should acquire 

values slightly higher or lower than one. The other steps of the migration are also 

necessary, because they should avoid the bottleneck of MOSOMA in region of local 

optimum. 

The objective functions are computed for each temporary position tmp. Then, 

a new external archive EXT(i) is determined by the non-dominated sorting the union 

between EXT(i ï 1) and set of all tmp positions. In one migration loop, the number of 

FFC(i) is given by the size of the previous external archive EXT(i-1), the number of 

migrating agents T and the number of steps ST: 

() ( )1FFC T STEXTi i= Ö Ö-  a (2.2)

2.1.1.4 Minimal Size of External Archive 

The minimal size of the external archive is important primarily for very complex 

problems. In those cases, MOSOMA is not able to find sufficient number of non-

dominated solutions during first migration loops. It is beneficial to fill the external 

archive with solutions from advancing fronts to keep efficiency of those migration 

loops. Parameter Nex,min cannot exceed size of the initial population |P(1)| and should be 

similar to the size of the final non-dominated set |P|. As discussed above, the number of 

objective function computations FFC increases with growing external archive size. 

Usually, MOSOMA finds larger number of non-dominated solutions. Thus, final size of 

EXT is greater than parameter Nex,min.  

2.1.2 Migration towards External Archive 

MOSOMA exploits the concept of external archive as defined in [18]. The external 

archive EXT stores all meanwhile found members of the non-dominated set P. 
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Searching of the non-dominated set P takes place in the objective space. MOSOMA 

uses the approach introduced by Deb et al. in [11] as described in subchapter 1.2.3. 

Minimal size of EXT is defined by the parameter Nex,min. If size of P (members of 

the first front) drops to less than Nex,min, the remaining positions in EXT are filled with 

members of advancing fronts with best values of so called crowding distance. This 

metric estimates the density of the solutions surrounding a particular solution [7]. 

The crowding distance is derived from the positions of the solutions in the objective 

space (see subchapter 1.2.4). The less crowded solutions are preferred. 

As in case of single-objective SOMA, individuals migrate through the N-

dimensional hyper-plane of input variables and try to find better solutions. MOSOMA 

uses the strategy which should be called ´AllToMany´. Every individual migrates 

towards all members of the external archive as depicted in Fig. 2.1. We assume that 

using equation (1.5) with the path length parameter PL slightly larger than one should 

provide new solutions, which are placed closer to the true Pareto front. 

Since size of external archive grows with every migration loop usually, the time 

devoted for consecutive migration loops increases also. Ensuring more accurate 

research of the region of current non-dominated set P is an advantage of this strategy. 

2.1.3 Stopping Conditions  

Taking into account the previously described behavior of the algorithm, following three 

stopping conditions are combined: 

¶ The total number of migration loops I. 

¶ The maximal size of the external archive Nex,max (usually a multiple of 

the desired number of Pareto-optimal solutions |P|). 

¶ The limit for objective function computations FFC. 

The setting of appropriate stopping conditions is very important from 

the computational time viewpoint, especially. Using the above described ´AllToMany´ 

strategy, increasing size of external archive brings more computations of objective 

functions, which is usually very CPU time consuming. In MOSOMA, the ratio of CPU-

time devoted for two consecutive migration loops is typically greater than one. 

Combination of these three stopping conditions ensures that optimization process 

stops in an estimable time and that sufficient number of non-dominated set members 

(candidates of the Pareto front) are found. 

2.1.4 Choice of Final Non-dominated Set 

Since the size of external archive grows usually very quickly a novel approach for 

selecting final non-dominated set P from current external archive was proposed in 

[PK 2] and [PK 3]. This procedure enhances the spread of final Pareto-optimal set. This 

procedure is applied only if the size of external archive is larger than the desired number 

of non-dominated solutions |P|, after any of the stopping conditions are met. First, M 

extreme solutions (having minimal value of particular fm) are saved into P. The rest of P 

is filled with members of EXT so that members of P cover the Pareto front uniformly. 

Two objective and M-objective variant of this procedure are discussed in the following 

text. 
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2.1.4.1 Two-objective Method 

The crowding strategy provides the requirement on MOEAs to find solutions with good 

spread. In order to improve its efficiency, we propose another additional approach based 

on measuring Euclidian distances among the non-dominated solutions as described in 

[PK 2]. 

This strategy works with all members of the discovered non-dominated set EXT 

saved in the external archive. The strategy assumes that EXT contains a higher number 

of non-dominated solutions than |P|. First of all, the non-dominated set is sorted 

according to the first objective in the ascending order. Then, the length of the Pareto 

front e is computed by: 

( )
2

2

2 1

( ) ( 1)
P

m m

p m

e f p f p
= =

= - -ä ä  a (2.3)

where fm(p) is m-th objective function of the p-th solution. 

After this procedure, the ideal distance between two uniformly spread solutions eu 

is computed: 

1
u

e
e

P
=
-

 a (2.4)

where |P| is the desired number of Pareto-optimal solutions. Extreme solutions with 

minimal values of both the objective functions are automatically assigned as the first 

member and the last member of the final non-dominated set P. Then, j-th member of 

the final set P is that one having the minimal value of metric Dj: 

( 1) ,

2,3,..., 1

j j uD e j e

j P

= - - Ö

= -
 a (2.5)

where ej is computed using equation (2.3) where j replaces p. 

The result of applying the previously described procedure on external archive 

containing more than 200 solutions is depicted in Fig. 2.3. Final non-dominated set P 

contains 25 solutions with very nice uniform spread. 

 

Fig. 2.3: The choice of final non-dominated set P from external archive EXT for 

two-objective Pareto front. 
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2.1.4.2 M-objective Method 

Unfortunately, the previously described two-objective approach cannot be directly 

extended for Pareto fronts having more than two objectives. In fact, when sorting 

the solutions of a multi-objective (M > 2) Pareto front according to one of 

the objectives, the sorted solutions are not neighboring in sense of a topology as 

depicted in Fig. 2.4. Also, various curved shapes of multi-objective Pareto fronts can 

make the choice of the final set P from EXT impossible according to regular elements of 

a particular hypervolume (e.g. elements of a surface for M = 3, elements of a volume for 

M = 4, etc.). 

Therefore, we have proposed a new method for the choice of the final non-

dominated set P from the external archive EXT in [PK 3]. We measure the Euclidian 

distance among the found solutions. First, M solutions with minimal values of particular 

fm are saved to P. Particular solutions are then successively saved into P until P does not 

contain the desired number of solutions. Always, the q-th solution from EXT having 

the maximal D (the sum of Euclidian distances towards all members of the current P) is 

chosen: 

() ()( )
2

1 1

P M

m m

p m

D f p f q
= =

= -ä ä  a (2.6)

An example of this procedure can be found in Fig. 2.5. A part of the surface of 

the paraboloid builds the Pareto front. Red crosses mark the chosen solutions in set P. It 

is obvious, that the chosen solutions are spread along the whole Pareto front uniformly. 

 

Fig. 2.4: The f1-f2 view of three-objective Pareto front, solutions are sorted 

according to the first objective. 
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Fig. 2.5: The M-dimensional choice of final non-dominated set P from external 

archive EXT [PK 3]. 

2.1.5 Constraints Handling 

Almost every real-life optimization problem is influenced by some constraints. 

The constraint divides the decision space into two parts: so called feasible and infeasible 

region. A good optimizer has to deal with the constraints and consider the Pareto 

optimal solutions resulting from the feasible region only. We assume J inequality 

constraints g as indicated in equation (1.1): 

( ) ( ) ( )

min max

( ), 1,2,..., ,

( ) 0, 1,2,..., ,

, 1,2,..., .

m
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n n n

Minimize f m M

subject to g j J
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Note that the ñlower thanò inequality constraint can be transformed into the ñgreater 

thanò constraint using the duality principle [12]: the constraint is multiplied by ï 1. 

MOSOMA employs a slightly modified penalty function approach (e.g. [31]) for 

handling with constraints. Every violation of any constraint has an impact on worsening 

the objective functions fm. First, violation Vj from normalized j-th constraint function for 

i-th solution is calculated [31]: 

()
() (), 0;

0, .

j i j i

j i

g if g
V

otherwise

ë <î
=ì
îí

x x
x  a (2.7)

Thereafter, objective functions are slightly modified to consider the violations from all J 

constraint functions: 

() () (),

1

J

c m i m i m j i

j

f f R V
=

= +äx x x  a (2.8)

where fc,m denotes modified m-th objective function and Rm stands for a penalty 

parameter. This constant is set for every objective function. It is introduced to equalize 

the magnitudes of both parts of the right hand side of equation (2.8). Our approach sets 

the maximal value of particular objective function fm,max (true or found by optimizer) as 

Rm. Equation (2.8) can be then rewritten to: 
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() () (), ,max

1

J

c m i m i m j i

j

f f f V
=

= + äx x x  a (2.9)

Use of fm,max values ensures, that objective functions of infeasible solutions are worsen 

sufficiently. 

2.2 Conclusions 

The extension of the single-objective self-organizing migrating algorithm has been 

derived in this chapter. The proposed algorithm is applicable on problems having any 

number of decision space variables and objective functions. MOSOMA is also able to 

deal with constrained optimization problems. 

A novel procedure for choosing the final non-dominated set has been proposed. 

This approach significantly enhances the uniform spread of the final non-dominated set 

found by the optimizer. The most important contributions of this chapter were presented 

in the journal Radioengineering [PK 2] and in proceedings of the conference 

Radioelektronika 2012 [PK 3]. 
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3 Convergence of MOSOMA 

The study of convergence properties is very important for every novel optimizer. 

Generally speaking, the convergence should be ensured for every numerical method. 

Nevertheless, theoretical proofs of stochastic algorithms that are strongly influenced by 

random processes are very rare. Therefore, the convergence properties of stochastic 

optimizers are usually shown on benchmark methods first.  

In this chapter, comparison of our novel algorithm with conventional methods 

transforming a MOOP to SOOP is presented first to substantiate the necessity of 

developing a new ñpureò multi-objective optimizer based on self-organized migration. 

Next, the results of two comparative studies are derived here to show the efficiency of 

MOSOMA in context of commonly used optimizers. Also the sensitivity analysis of 

the controlling parameters was performed to provide recommended values to help other 

users with properly setting MOSOMA. Finally, the proof for theoretical convergence of 

MOSOMA is derived. 

3.1 Comparison with Conventional Methods 

Conventional methods transform the MOOP into the SOOP, so that M objective 

functions are weighted by some coefficients and summed to build one composed fitness 

function. Short overview of these methods is presented in Appendix 1. Probably 

the most popular conventional method is the Weighted Sum Method (WSM). This 

method is very simple for implementation but the proper setting of weights for 

particular objectives a priori is usually very complicated. This disadvantage of 

the WSM can be shown on following simple two-variable and two-objective problem: 

1 1

2
2

1

1

2

,

1
,

0.1 1,

0 1.

f x

x
f

x

x

x

=

+
=

¢ ¢

¢ ¢

 (3.1)a 

The Pareto front of this problem is depicted in Fig. 3.1. It is obvious that extreme 

solutions of the Pareto front are f
*
 = {0.1; 10} (x

*
 = {0.1; 0}) and f

*
 = {1; 1} 

(x
*
 = {1; 0}). 



 

27 

 

 

Fig. 3.1: Pareto front with highlighted extreme solutions of a simple two-objective 

problem [PK 1]. 

Applying the WSM on equation (3.1) results in: 

2
1 1 2 2 1 1 2

1

1 x
F w f w f w x w

x

+
= + = +  (3.2)a 

The optimality condition of the first order is: 

2
1 2

1 1

1 xdF
w w

dx x

+
= -  (3.3)a 

As stated before, sum of weights equals to one w1 + w2 = 1. This equation and equation 

(3.3) build a linear system. Solution of this system for extremes of Pareto front is 

w1 = {0.91; 0.09} and w2 = {0.5; 0.5}, respectively. It is obvious, that weights of 

the objective functions should vary only in intervals w(1)  ɴộ0.50; 0.91ἃ ÁÎÄ 
w(2)  ɴộ0.09; 0.50ἃȢ /ÔÈÅÒ ÃÏÍÂÉÎÁÔÉÏÎÓ ÏÆ ×ÅÉÇÈÔÉÎÇ ÖÅÃÔÏÒÓ ÌÅÁÄ ÔÏ the extreme 
solutions. 

Most interesting thing on this problem is that the use of the WSM with weighting 

vector w = {0.5; 0.5} leads to one of the extreme solutions. Although relative 

importance of both the objectives is the same, the solution is optimal only from point of 

the view of the second objective function f2. Instead of finding a solution in the middle 

of the Pareto front from Fig. 3.1, solution f
*
 = {1; 1} is found. 

3.1.1 Comparison of MOSOMA with WSM and WRMM 

This subchapter is aimed to emphasize the shortcomings of conventional methods based 

on summing of all objective functions into one fitness function to reveal the whole 

Pareto front. Pareto optimal solutions found by pure multi-objective algorithm are 

compared with solutions obtained using WSM and Weighted Rotated Metric Method 

(WRMM) with conventional single-objective algorithm. We have used conventional 

SOMA with WSM and WRMM and our new optimizer MOSOMA. The detailed 

description of both the conventional algorithms can be found in Appendix 1. 
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The illustrative comparison is made on a two-objective two-variable problem: 

1 1

2

2 2 1 1

1

2

,

1 0.1sin(3 ),

0 1,

2 2.

f x

f x x x

x

x

p

=

= + - -

¢ ¢

- ¢ ¢

 (3.4)a 

This problem has the Pareto front with three parts: two of them convex and one non-

convex as depicted in Fig. 3.2. The detailed description of this test can be found in 

[PK 1]. 

Multi -objective optimizers should meet two main goals: achieving the solution as 

close to the true Pareto front as possible, and obtaining the solution with the uniform 

spread on the Pareto front. These two conditions together ensure that the whole Pareto 

front is found. 

 

Fig. 3.2: Three Pareto optimal solutions obtained by WSM, WRMM and 

MOSOMA [PK 1]. 

The first goal is represented by a metric generational distance GD introduced by 

Veldhuizen in [13] (for the detailed definition see subchapter 3.2.1). It is a mean 

distance (usually Euclidian) between any solution found by the algorithm and 

the closest member of 500 uniformly spread true Pareto-optimal solutions. With incre-

asing accuracy of the algorithm, the GD converges to zero. 

The second goal can be expressed with a metric spread ȹ proposed by Deb in [7]. 

The spread measures mean error of any distance (usually Euclidian) among the sorted 

Pareto front solutions and their ideal distance. Also this metric decreases with 

increasing accuracy of the algorithm. Again, the detailed definition of this metric can be 

found in subchapter 3.2.1. 
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Algorithm Metric FFC (-) GD (-) ȹ (-) tCPU (s) 

WSM 
average 5.70×10

3
 1.11×10

-2
 1.10×10

-0
 4.59×10

-1
 

variance - 1.25×10
-2
 2.40×10

-2
 2.26×10

-5
 

WRMM 
average 5.70×10

3
 3.23×10

-3
 2.54×10

-1
 2.30×10

-0
 

variance - 3.63×10
-5
 2.10×10

-3
 6.80×10

-3
 

MOSOMA 
average 2.87×10

3
 3.50×10

-3
 7.74×10

-2
 4.85×10

-0
 

variance 4.15×10
6
 3.63×10

-5
 1.63×10

-2
 1.76×10

2
 

Tab. 3.1: Comparison of the GD, ȹ, FFC and tCPU using the WSM, WRMM and 

MOSOMA [PK 1]. 

For the simulations, controlling parameters of all three methods were set to 

the same values: number of agents P(1) = 20, normalized length of path 

PathLength = 1.3, number of steps ST = 3, the probability of perturbation PR = 0.1 and 

the number of final Pareto front solutions Nexf = 10. For WSM, 10 equidistantly spaced 

weights from the interval ộ0; 1ἃ were chosen. For WRMM, the rotation angle a took 

uniform values from 0° to 90°. For the conventional methods, 5 migration loops were 

computed (FFC = 5700). The minimal size of the external archive for MOSOMA was 

Nexmin = 5. Stopping conditions were: 5000 FFC and 100 solutions in the external 

archive. All simulations were performed hundred times. The average results are listed in 

Tab. 3.1. Pareto-optimal solutions from one randomly chosen run obtained by all three 

methods are then depicted in Fig. 3.2.  

The weighted sum method is the fastest one but achieves worst results in both 

the most important metrics GD and ȹ. The method was not able to find any solution in 

the non-convex part of the true Pareto front. 

The rotated weighted metric method is able to reach almost the whole Pareto front 

including its non-convex part. This method has problems to reach the extreme solutions 

at the ends of the Pareto curve. This imperfection could be possibly fixed using another 

weighting vector. WRMM method achieved the best mean value of the GD metric and 

good value of ȹ. 

MOSOMA reveals the whole Pareto front with the best spread. The mean value of 

the metric GD is slightly worse than in case of WRMM what is caused by less number 

of FFC. The Euclidian distance between the generational distance and the spread of 

MOSOMA and the hypothetical vector {0; 0} was the least one.  

We can claim that only the pure MOEA shows ability to reveal the whole Pareto 

front and therefore these algorithms are necessary when solving an optimization 

problem having multiple objectives. 

3.2 Comparison with Benchmark Methods 

Applying a new multi-objective optimizer on large suite of test problems is the first 

logic step to ensure, that the proposed method is able to solve multi-objective problems 

efficiently.  

The multi-objective optimization is assumed to achieve two goals at the same 

time: 
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1. The element of the computed non-dominated set P has to lie in the minimal distance 

from the true Pareto front P
*
 of the problem. 

2. Elements of the set P have to be distributed uniformly. This ensures that the whole 

Pareto front P
*
 has been found. 

The quality of achievements can be expressed by means of metrics applied for 

benchmark problems with known Pareto fronts.  

3.2.1 Performance Metrics 

Large number of evaluation metrics can be found in references [11]. We present here 

only the most used. These metrics enable us to compare performance of MOSOMA 

with previously published studies about other MOEAs.  

3.2.1.1 Generational Distance 

The generational distance (GD) was introduced by Veldhuizen in [13]. This metric 

evaluates the quality of the computed non-dominated set from the viewpoint of 

accuracy. GD measures the Euclidian distance between members of set P and members 

of a set of 500 uniformly spread true Pareto front members P
* .
 The GD metric is defined 

by: 

2

1

P

p

p

d

GD
P

=
=

ä
 

(3.5)a 

where dp stands for the minimal Euclidian distance measured in the objective space 

between the p-th solution from the computed P and the corresponding member of 

the true Pareto front P
*
: 

( )
*

2
*

1
1

min ( ) ( )

P M

p m m
k

m

d f p f k
=

=

= -ä  (3.6)a 

Here, k denotes the index of the solution in the set P
*
 which has the minimal distance to 

the p-th member of the set P. The lower value of the GD metric is achieved, the more 

accurate the solution is. For the ideal solution the metric GD reaches zero. 

3.2.1.2 Spread 

The spread (ȹ) was introduced by Deb in [7]. This metric measures the quality of 

the distribution of the computed set P. It is evaluated in the objective space. The spread 

metric measures the ratio between the sum of deviations from average distances among 

neighboring Pareto-optimal solutions and the sum of all distances. The set P has to be 

sorted such a way so that the neighboring solutions can be found. Therefore, such 

a defined metric can be computed only for two-objective problems. The spread can be 

computed using equation: 

2

,

1 1

2

,

1

P

e m p avg

m p

e m avg

m

d d d

d P d

= =

=

+ -

D=

+ Ö

ä ä

ä
 (3.7)a 
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where dp denotes the Euclidian distance between the p-th and (p + 1)-st solution from P, 

de,m denotes the distance from computed extreme solutions to the true ones and davg is 

the average distance among all computed solutions 

 

Fig. 3.3: The pseudocode of the Kruskal algorithm finding MST. 

We have proposed a novel method for computing the spread metric for problems 

having more than two objectives also [PK 3]. The procedure is based on finding so 

called minimum spanning tree (MST) of non-dominated set P. The MST is defined in 

[32]: 

Given a set of vertices, a spanning tree of their graph is a sub-graph-that is 

a tree and connects all the vertices together. A minimum spanning tree (MST) is 

then a spanning tree with weight less than or equal to the weight of every other 

spanning tree. 

For a set of points, MST connects these points so that all are connected. There are 

no cycles in the tree and the sum of lengths of its branches is minimal. Searching for 

the MST is the NP-complete problem. 

For our purposes, the MST hast to be found exactly. Therefore, we have to use 

an analytic method for finding the MST; e.g. the Kruskal algorithm [33]. 

The pseudocode for the Kruskal algorithm can be found in Fig. 3.3. First, set E 

containing distances between every two points i and j in set P is computed. Then, we 

remove the minimal ei,j from E and save it into the MST until the MST contains |P| - 1 

members. Connected points i and j are saved into a cluster C. Edges between points i 

and j that are in the same cluster are not considered. If points i and j are in different 

clusters, these clusters are united. If any of points i or j does not belong to any cluster, 

we save it into a new cluster. 

Start 

 Find set E = { eij}   ᶅi, j  ɴ{1, 2,é, |P|} , i Í j 

 Remove min eij from E and save it to MST 

 Save points i and j to cluster C1 

 K = 1 

 While |MST| Í |P| 

  Remove min eij   ɴE : (i  ɵCk ᷈  j  ɵCk)  ᶅk  ɴ{1, 2,é, K}   

  Save it to MST 

  If  i  ɴCk  ᷈j  ɴCk  

   K=K  - 1 

   Make union of both clusters 

  Elseif  i  ɵCk  ᷈j  ɵCk 

   K=K  + 2 

   Create a new cluster for i and j 

  Else 

   K=K  + 1 

   Create a new cluster for i or j 

  End 

 End 

End 
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Fig. 3.4: The minimum spanning tree of the three-objective Pareto front. 

An example of the MST of the Pareto-optimal solutions building a part of a sphere 

is depicted in Fig. 3.4. Obviously, the lengths of MST branches are equal for uniformly 

distributed points. Thereafter, the spread metric defined by (3.7) can be evaluated for 

any number of objectives. The extended M-dimensional spread metric ȹM can be 

computed [PK 3]: 

,

1 1

,

1

MSTM

e m p avg

m p

M M

e m avg

m

d d d

d MST d

= =

=

+ -

D =

+ Ö

ä ä

ä
 (3.8)a 

where meaning of all symbols remains the same as in equation (3.7). The described 

approach can be applied to problems with an arbitrary number of objectives (including 

two). 

If computed solutions are distributed ideally on the true Pareto front, the spread 

metric becomes zero. Commonly used algorithms usually achieve a spread between 0.1 

and 0.7 [11]. 

3.2.1.3 Hit Rate 

Hit rate HR is a very simple metric expressing efficiency of the search. It has been 

defined in [14]: 

100%
P

HR
FFC
= Ö  (3.9)a 

where |P| is the total number of the found non-dominated set members, and FFC is 

the total number of evaluations of objective functions. Certainly, the higher values of 

HR indicate the better efficiency of the algorithm since only the region containing 

Pareto front members is researched.  

3.2.1.4 Hypervolume 

The hyper-volume metric HV evaluates the multi-objective optimizers from 

the viewpoint of the spread and the accuracy at the same time. HV measures the volume 
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in the objective space, which is dominated by the solutions from the found non-

dominated set P [13]. For each solution from P, the hypercube volume vp between the p-

th solution and a reference point W is computed. Then, the hyper-volume can be 

defined: 

1

P

p

p

vHV volume
=

å õ
= æ ö

ç ÷
 (3.10)a 

Here, vp denotes the hypervolume between p-th point from the non-dominated set P and 

the reference point W. Total hypervolume HV is the union of individual hypervolumes 

vp as depicted in Fig. 3.5. The position of the reference point can be simply defined by 

a vector composed from the values of the worst objective functions of the extreme 

solutions of the true Pareto front. 

Obviously, values of the HV metric are significantly influenced by the magnitudes 

of individual objectives. Therefore, the relative hyper-volume metric HVR was proposed 

in [13]. The hyper-volume of the computed set P is normalized with the hyper-volume 

size of the true Pareto front (the same set of 500 uniformly spread solutions, as in 

the case of GD, is used) [13]:  

()

( )

HV P
HVR

HV P*
=  (3.11)a 

 

Fig. 3.5: Meaning of the hypervolume metric. 

The relative hyper-volume metric can rise with the increasing accuracy of 

the computed solution P. The relative hyper-volume metric reaches one for the ideal 

distribution of the computed Pareto optimal set P. Usually, the relative hyper-volume 

error is given by: 

error 1HV HVR= -  (3.12)a 

Similarly to the previously described metrics, solutions with a better spread and 

accuracy can reach a smaller value of the hyper-volume error. 
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3.2.2 Experiments 

We have made two comparative studies of MOSOMA with other multi-objective 

optimizers that exhibit very good performance on various problems (NSGA-II , SPEA2). 

Brief description of these algorithms can be found in Appendix 2. 

We have published results for two large tests in [PK 2] and [PK 3]. First one 

considers various types of two-objective problems. The second paper is focused on 

MOSOMA efficiency when it is solving problems with more than two objectives (three-

objective problems have been used so that obtained results can be displayed easily). 

Definitions of the used benchmark problems with their properties can be found in 

Appendix 3. 

3.2.2.1 Two-objective Problems 

Results of MOSOMA were compared with results obtained by NSGA-II and SPEA2 in 

[PK 2] on SC1, SCH1, FON, POL, ZDT1 and ZDT2 problems. Both the algorithms 

were set to provide 50 Pareto optimal solutions and to compute the objective functions 

25000-times. Therefore, parameter FFC of MOSOMA was set to the same value to 

satisfy fairness of the comparison. The quality of proposed solutions was measured by 

hit rate, generational distance and spread metrics. The controlling parameters of 

MOSOMA were set to the following values: 

¶ The total number of computations of the fitness function FFC = 25000. 

¶ The minimal size of the external archive Nex,min = 20. 

¶ The size of the initial population P(1) = 50. 

¶ The path length PL = 1.3. 

¶ The probability of perturbation PR = 0.1. 

¶ The number of steps ST = 3. 

¶ The number of migrating agents T = 25. 

All algorithms were run 100-times, statistic values are then summarized in 

Tab. 3.2 (HR metric), Tab. 3.3 (GD), Tab. 3.4 (ȹ) and Tab. 3.5 (FFC). The HR metric is 

presented only for MOSOMA, because SPEA2 and NSGA-II does not work with 

external archive and provide only requested number of non-dominated solutions and do 

not keep other non-dominated solutions found during the optimization. The hit rate 

would be in this case only 0.2 %.  
 

Algorithm Problem SC1 SCH1 FON POL ZDT1 ZDT2 

MOSOMA 
Average  28.30 53.46 12.39 23.86 11.46 29.08 

Variance 151.55 73.39 11.56 62.04 15.07 74.17 

Tab. 3.2: Results of the HR (%) metric for MOSOMA. 

As can be seen MOSOMA achieves comparable results of GD metric as 

optimizers SPEA2 and NSGA-II (see Tab. 3.3). It should be noted here, that usually, 

MOSOMA executed less number than the other algorithms as indicated in Tab. 3.5. On 

the other hand, MOSOMA excels in spread metric values. It achieved significantly 

better values of ȹ for all test problems (see Tab. 3.4). Values of all metrics are worse for 

the ZDT1 and ZDT2 problems having large number of decision space variables. More 
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robust settings of the optimizer (higher P(1), FFCé) should be used for solving these 

problems. 

Pareto-optimal solutions found by MOSOMA are depicted in Fig. 3.6 for all used 

test problems. Randomly chosen results were taken. As can be seen, MOSOMA reaches 

the true Pareto front with very good spread in all cases except ZDT1 problem. 

  

  

  

Fig. 3.6: Pareto-optimal solutions found by MOSOMA: test problems SC1, SCH1, 

FON, POL, ZDT1 and ZDT2 (from the top left to the bottom right) [PK 2]. 
























































































































