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Abstract

This thesis describes a novel stochastic nuldjective optimization algorithm called
MOSOMA (Multi-Objective SeHOrganizing Migrating Algorithm)lIt is shown that
MOSOMA is able to solve various types of mudbjective optimization problensvith
any number of objectives, unconstrained or constrained problems, with continuous or
discrete decision space)lhe efficiency of MOSOMA is compared with other
commonly used optimization techniques on a large suite of test probldrasew
procedure based on finding of minimum spanning tree for computirgptiad metric
for problems with more than two objects/és proposed.Recommended values of
parameters controllinthe run of MOSOMA are derived according to their sensitivity
analysis.The aility of MOSOMA to solve realife problems from electromagnetics is
shown in a few examplegYagi-Uda and dielectric ilters design, adaptive beam
forming in time domainé)

Keywords
Multi-objective optimization, selbrganizing migratig algorithm MOSOMA.
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1 Introduction

1.1 Multi-objective Optimization

Optimization takes place in almost every engineering discipline. Optimization is
aprocess of finding and comparing feasible solutions timtibest solution is assigned.
Thequality of thesolution can be measured thevalue ofanobjective(fithess cos)
function. Theobjective function expresses requirementsh@solution in tems of e.g.
reliability, price, dimensions dhefinal product, efficiency o manufacturing process
etc.

Intuitively, most ofthereal world problems consider more than one objective.
These objectives can be either corresponding or conflicting.thiefirst case
theoptimization results in one solution, which is optimal froheviewpoint of all
objectives. Considering conflicting objectives optimization leadsstet of solutions. In
this case fAopt i nbetradeoHf arongtaliobjetiges.r e pr esent

This set builds inthespace of objective functions theso-called Pareto front
named afteranltalian economist Vilfredo Pareto (1848 1923) who dealt with
conflicting objectives in his works about economic efficiency and redistribution of
incomes. Members ofthePareto front have to satisfithePareto efficiency:
improvement othe solution in one objective has to lead to deterioration in qualig} of
other objectives.

This phenomenon can be easily explainedubyng thefollowing example from
everyday life. When someone travels somewhiere exisseveral options to choose:
aplane,acar, abus, abike etc. Every vehicle has its own traveling time and price.
When someone wants to optimize his travel considering Ihetbetobjectives, Pareto
front from Fig. 1.1 can be very helpful for him. It is obvious that usiaglane is
thefastest option. Therefor@,plane isthebest chae fromtheviewpoint of traveling
time. On thecontrary, usingabike is thecheapest way so it is optimal from
theviewpoint oftheamount of spent money. Traliefy by bus or drivingyour own car
arethetradeoff solutions. Buino vehicle beatsheother in both objectives.

A designer has two possibilities of choositfgefinal solution of the multi-
objective optimization problenThefirst one is to assigapriori importance to every
objective, composean aggregatefitness function and solvéheprodem as asingle
objective one using weltknown stochastic singlebjective algorithms. This approach
assumes thatheuser knows some extra information abdbéoptimized problem.
Thetradeoff is made with no information abotite shape othe Pareto front.

Since it is very difficult to estimattheshape ofthe Pareto frontapriori another
way of choosingthefinal solution can be beneficial. Firdhewhole Pareto front is
obtained and then, tragd#f among all objectives is made accordittggtheshape of
thePareto front.
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Fig. 1.2 Choosingavehicle according to traveling time and price.

Thefirst intuitive way how to obtaithe Pareto front is to ruthesingleobjective
optimizers several times with different settings of importance for iddaliobjectives.
Although agreat effort was devoted tthedevelopment of these methods during
thesecond half ofthe2d" century some shortcomings lead tleedevelopment of
A pur e 0-objeutivé toptimizers which look forthePareto efficiency during
the optimization process.

It is obvious that anefficient multtobjective optimizer canalso be
advantageously used thmedesign of electromagnetic structures in cooperation with
suitable analysis tosk.g.afull wave solver, antenna design tpeic.

1.2 Survey of Previous Work

This thesis implementsrelatively new stochastic Selfrganiang Migrating Algorithm
(SOMA) [1] for multi-objective optimization of electromagnetic components.
Anoriginal Multi-Objective Self Organizing Migrating Algorithm (MOSOMA) is
derived. Multi-objective optimization has its ownles that are slightly different from
those known from conventional optimization.

Multi-objective optimization is arelatively young part of evolutionary
optimization. Theimportance and topicality can be proven thwe furious growth of
thenumber ofbooks journak and conference papers publishpst yearduring the last
two decadesData fromyears 1990 to 2010 taken fra@| are depicted irFig. 1.2 It
seems thahegrowth reached its peak theyear 2009.

Thefirst attempts to use stochastic optimization algorithms in electromagnetics
are datedack to thdast decade athe 20" century[3], [4]. These methods are usually
based on evolution (e.g. Genetic Algorithrffy) or swarm cooperation (e.g. Particle
Swarm Optimization[6]). They are very attractive, because their use is relatively
simple. They can be implemented with basic knowledge of programming and
mathematics. In factheonly problematic task foadesigner is to definthe objective
functions properly.
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Fig. 1.2 Number of multiobjective optimization references per year from 1990 to
2010.

Nowadays, almost every efficient optimization approach has its own-multi
objective variant. These extended versions treat problems of conventietiabds
transforminga multi-objective problem intasingle objective one (se&ppendix J.
Generalized algorithms are then able to solve problems having any mohdigective
functions.Justafew generalized approachase mentioned heres.g. Nondominated
Sorting Genetic Algorithmll (NSGA-Il) for genetic algorithms[7], Generalized
Differential Evolution GDEJ) for differential evolution[8], Multi-Objective Particle
Swarm OptimizationNIOPSQ for particle swarm optimizatiof®] etc.

Our novel MOSOMA isanextension oftheoriginal algorithm SOMA that was
introduced in 2000 by Ivan Zelinka [d] and shows very good performance on many
varioussingle-objectiveproblems. Althougtiheauthor states ifiLO] that his algorithm
is able to solve MOOPs it is not fully tru€heonly implementations cSOMA [10]
that solved multobjective problems usetheconventional methods that transform
amulti-objective problem intasingleobjective one (SOOP).

Since stochastic mulbbjective optimization isarelatively new discipline,
principles necessary for properunderstandinghe developmentand functionality of
our novel algorithm are briefly introduced in this chapfdso, the principles ofSOMA
and its applications are briefly describedost of theproperties discussed in the
following subchapters are summarized[RK 5]. Finaly, themain objectives of this
Ph.D. thesis are formulated the end of the first chapter

1.2.1 Properties of MOOP

Generally, multiobjective optimization problem (MOOP) deals wifinite number of
objective functions that should be either minimized or maximiZé&maximization
problem can be simple convertedte minimization problem multiplyinghe objective
function by-1. Therefore, ithenext parts of this text only minimizatiggroblems are
consideredTheMOOP can be simply described witie equation:



Minimize f{,(x), m=12,...M
subjectto  g(x)2 0, 142,...,3, (1.1)
X ¢ XV X n £2,..N.

ax!?

where M denotes number of objectivel, denotes number of decision variablas,
stands forvector of decisionvariables for individual solutions ang,, and Xmax are

lower and upper boumsdof thedecisbn space variables respectively,stands for
number of constraintg. Thetransformation froma decision space dheinput variables
into anobjective space ofthetwo-variable tweobjective problem is depicted in
Fig. 1.3

Decision space Objective space
[ Inon-optimal solutions
1r 1 -— feasible space borders
- Pareto-optimal solutions
0.8+ 1 0.8+
0.6+ 1 0.6+
0.4 1 0.4
0.2+ 1 0.2+
0 0
0 02 04 06 038 1 0 02 04 06 038 1

x 6 £,6

Fig. 1.3 Thetransformation fronmthedecision spaceldft), to theobjective space
(right) of the optimization problem.

As mentioned beforanulti-objective optimization works with two spaces. First
one is theN-dimensional decision space of input variables where every point in
thefeasible region ighestate vectorx. Second one ishe M-dimensional objective
space. Every statevectwi s here fAevaluatedo with, val ue
Mapping between these two spaces is oftenlm@ar. It is important to know, that
theproperties of these two spaces are not similar. Famele, two state vectors having
minimal distance inthedecision space can have very long distancéheobjective
space.Thesearch forasolution takes place ithedecision space and is controlled by
information from theobjective space. This is veryifficult becausethecontrolling
mechanism ofanalgorithm must be independent dhemapping between both
thespaces.

ThesetP’ of state vectors is thesolution ofthemulti-objective problem. This
solution can be depicted thedecision or objectivespace as shown iRig. 1.3 All
members (solutions) from s& build in theobjective space so called Pareto front.
Generally, number of Pareto optimal solutiossfiom interval P'|N 61:D ) . Size of
the P depends onherelation betweertthe objectives. If objectives are conflicting, then
there are more than one Pareto optimal solutiéhg>|1. If all objectives are



corresponding, then there is only one optimal solution. These two cases are illustrated in
Fig. 1.4

Generally, solution oftheM-dimensional problem is M1 1)-dimensional
hypervolume. For example solution tifetwo-objective problem ighecurved line,
solution of thethreeobjective problem is curved surface and solutionthafour-
objective problem is curved volume etc.

Knowing all Pareto front members helie designer to choogefinal solution.
Usually, thefinal solution is chosen according teeshape ofthefound Pareto front.
There are several types of Pareto front: convex,-aomvex, continuous and
discontinuous. All four types are depictedrig. 1.5. As stated in subchapt8rl.land
in Appendix 1some optimizers have problem to reveal sconvex parts ofthePareto
front.

Pareto front is built by infinite number of members in most cases. Obviously, it is
not possible tofound all these solutions in everyday life. Therefore, most of
theoptimizers works so, that user sets number of Pargtinal solutions that should
be found.

[ INon-optimal solutions ["INon-optimal solutions
Pareto-optimal solutions 1r X Pareto-optimal solutions
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4
56

0.6 0:8 ‘i
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Fig. 1.4 Objective space with conflicting (left) and corresponding (right)
objectives.

Thefinite number of wanted solutions bringfecessity to found solutions that
are equidistantly spaced and cowBewhole Pareto frontThedifference between
thebad and good solution can be seerFig. 1.6. Although all blue solutions from
Fig.1.6 are located exactly othetrue Pareto front, they cover only few parts of
thefront. Ontheother sidethedistance between every two consecutive solutions from
thered set is alwayshesame. This characteristic is crucial for every moiijective
optimizer. Theapplied searching strategy itheobjective space has to consider
the necessity to find solutions with good spread.

New t echni gqu e sobjectve opfinpzers wete deneldpdd iespecially
during thelast decade ofhe20" century. Here, onlfthemost important techniques
from theviewpoint of our proposed optimizeiill be explained.
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Fig. 1.5 Types of Pareto front: convex (left), noonvex (right) and discontinuous
(left).
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Fig. 1.6 Thedifference between solutions with good and bad spread.

1.2.2 Principle of Dominance

Almost every stochastic multibjective optimizer that searchés the Pareto optimal
set involvesaprinciple of dominance. It compares two solutions and tries to decide, if
one dominatetheother or both are nedominated. It is definefL1]:

Solution x; is said to dominatéhe other solutionx,, if both conditions 1 and 2
are true:

1. Solution x; is no worse tham; in all objectives.
2. Solution x; is strictly better tharx; in at least one objective.



Theprinciple of dominance can be clearly understandable Figrl.7. Thedecision if
some solution dominatele other takes place ithe objective space. This figure depicts
five solutions of thetwo-objective problem.Thedashed lines mark out parts of
theobjective space that are dominatedthgcorresponding solution. In this specific
case: solutiorx; dominates solutions, andxs. Soltion xs is dominated by solutior.
Finally, solutionsx; andx, are nordominated.
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Fig. 1.7 Principle of dominance.

It is obvious that if solutiorx; dominates solutiox,, then solutionx; is better.
Having minimization problenvalues of all objective futions for solutiornx; are lower
than for solutiorx,. If two solutions are nedominatedit camotbe decided, which one
is better.

It is good to notice that any solution does not dominate itself. This is caused by
thesecond condition inhedefinition of thedominance principle. This property has to
be considered when designiagnulti-objective optimizerTheset of solutions carot
containthesame solutions when it is compared according to principle of dominance.

Next property ofthedominance principle that can speed ting whole process is
thetransitiveness ofthedominance relation. It means thatxf dominatesx, and x;
dominatesxs, then xs is dominated byx;. On thecontrary, if solutionx; does not
dominatex,, it does not imply thtx, dominates;.

1.2.3 Non-dominatedSorting

This procedure assigntheset of nordominated solutions? from theset of all
researched solutiorfd. Thenondominated set can be defingd]:

7



Thenondominated set P consists of solutions from Q, which are not
dominated by any member of set Q.

If setQ coverstheentire search space, therbecomeshetrue Pareto optimal set
of solutionsP". Other wordsP has to creat¢he Pareto front because dominatesall
other solutions from QFor example inFig.1.7 theresearched solutions builset
Q ={x1, X2, € , X5} and nordominated seP is built by only two solutionsonly P ={

X1, Xa}.

As can be seen ifrig. 1.8 set Q can be sorted inttheadvancing fronts. All
members othefront of thesecond level are dominated by members of first level front.
And all members othethird level front are dominat by members of previous fronts
etc. Theadvancing fronts are in fact local optima of our optimized problem.

Set Q
sz Xg
A

X4 best
X7

X1 worst

Fig. 1.8 Sorting of population into fronts of different lej&#].

Start
Fori=1:|Q|
insert=1
Forj=1:[Q|
Ifj, i
If x; dominates;
insert=0
Break increment#ion j
End
End
End
If insert==1
P=Pz x;
End
End
End

Fig. 1.9 Pseudecode ofthenaive algorithm for assignirthe non-dominated set.

Almost every pure MOEA exploithhe non-dominaed sorting to chooséhe best
solutions fromtheresearched set. Usuallhis procedure is repeated in every iteration
loop of those algorithms. Therefore, it important to found thenondominated
solutionsP as fast as possible.



Thenaive approach is to compare every solution from Gewith all other
solutions on dominanc&hepseudecode of this approach is depictedFiy. 1.9. It is
obvious that this approach is unnecessarily time consuming.

One ofthepossible improvements bringfse algorithm described ifiL1]. It works
with continuously updatedes of nondominated solutions. It employs abetter
bookkeeping of solutions that were checked for dominance. Every consecutive solution
Xq IS compared with all solutions in curretIf this solution dominates any member of
P, then that dominated solati is deleted fronP. If solution x4 is dominated by any
member of currenP, then it is ignored. Itheg-th solution is not dominated by any
member ofP, then it is entered iP. When all solutions fronthepopulation are
checkedP becomeghenonrdominated set afesearchedetQ.

Efficiency of this approach influences positively speedhefiwhole optimization
processTheprinciple of this approach can be clearly understandable from pseddo
in Fig. 1.1Q If repeated, this approach can sort@lkolutions in consecutive fronts.
Advancing fronts can be used to enhance diversity of fourid set

Start
Insertx; fromQ to P
Forg=2:Q|
insert=1
Forp=1:P|
If X4 dominates,
Deletex, from P
End
If X, dominates
insert=0
Break incrementation p
End
End
If insert==1
Insertx,to P
End
End

End

Fig. 1.1Q Pseudecode ofthe continuously updated algorithm for assignthg nor
dominated set.

1.2.4 Crowding andFitnessSharing

Thecrowding approach was introduced[itb] and it tries to emplsze thesolutions
from current population that are less crowdedtlieobjective space to preserve
thediversity amongheresulting Pareto optimal set found time optimizer.

Theconcept of crowding can be replenished wiitlefithness sharing technique
introduced iM16]. All members of currently found nestominated set are assigned with
another shared fitnegg. Theless crowded membekvithin one front have higher value
of thefg, It is ensured thaheworst member ofhefront of lower level has highdt,
value tharthemember othenext front.

One ofthemost commonly used techniques for determinatiofyofalues is so
called nching [17]. Theniche count is computed for every candidate for Pareto optimal
set according to its distance to other solutions. This distance is taken intotacetyu
if it is lower thansgshareValue specified by user. Although some recommendations are

9



given for fixing this valuesshare this setting is usually difficult and strongly influences
the performance ofheoptimizer.

Another approach described [i@] makes awaythenecessity of determining
thevalue Sshare It is called crowding distance measurement. First, members within one
front are sorted according to one objective. Thhadensity of solutions surrounding
every member othefront is computed fronthe Euclidian distance tthe neighboring
solutions.For theboundary solutions large crowding distance is set to sa®und
extreme solutions automatically. This technique gives preferential treatminatiéss
crowded solutions.

X
0.8 b
X
0.6 b
b i-1 .
0.4} X-----sbeid ____, 1
I I
I 1
I . 1
I U 1
0.2 : X : |
_____________ %
i+1 X
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
L0

Fig. 1.11 Crowding distance measurem¢ht].

Thecrowding distance is derived fronthepositions of thesolutions in
theobjective space. First of althemembers of one front are sorted according to all
the objectivesf,. Thevectors of sded indicesl, are found.Thecrowding distance
for each member ghefront can be computed usitige following equationg7]:

(1)) =& G (1,0)) (1.2)
where
£(1L.G+D) F.(1.0 %
6, (1.()) = n( m('f+ ))_ fm(‘m( ) (1.3)

where I(i) is thei-th index fromthemth vector of indicesfmmax and fmmin are
themaximal and minimal values ¢fiemth objective inthecurrent front, respectively.
Thevaluec,, for these two extreme solutions is set to infinitite crowding distance is
theaverage side length dhecuboid defined by solutions surroundirgarticular
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solution (seeFig.1.11). Theless crowded solutions (withhigher value ofc) are
preferred intherest ofthealgorithm.

1.2.5 External Archive

Lot of authors tried to turn profibf theParticle Swarm Optimization (PSO) search
strategy also for mukbbjective optimizers because of very good performance of this
algorithm on singlebjective problems. Comprehensive review of PSO roligctive
optimizers can be found if®]. Because particles ithegeneral PSO are attracted by
theparticle with best value of fithess function, plenty of approaches how to preserve
diversity withinthe swarm wee introduced during nineties tife 20" century.

Themost interesting approadbr our workis theuse of so called external archive
[18]. Theexternal archive contains fixed number of so far found-caminated
solutions. This method introducéise elitism into themulti-objective PSO. All other
particles then fly witha certan weight towards solutions in external archive. Different
methods for selecting and removitige solutions fromthe external archive can be used
to generate satisfactory approximatiorthe Pareto front.

All optimizers usingtheprinciple of external akive have to be aware of
thepremature convergence. If all memberstldeternal archive lie irtheregion of
local optimum, they can attract all other memberghefset Q to this region, while
theexact solution can be somewhere else. As mentionedeh#iedistances between
thesolutions inthedecision space and objective space are usually not in proportion.
Thelocal optimum can be for exampllee front of thehigher level aghegreen line in
Fig. 1.8

1.2.6 Sel-Organizing Migrating Algorithm

The Selt-Organizing Migrating Algorithm (SOMA) isarelatively new stochastic
optimization tool introduced by |I|. Zelinka and J. Lampinen in 2009.
Thecomprehensive description and analysis tbealgorithm performance was
published in[10]. Thealgorithm is based otheselforganizing behavior of group of
individuals called agents. Agents migratehe N-dimensionahyperspac®f optimized
parameters to findhevector of input variables with best value of fithess function.
Theknowledge abut theresearched space is shared withhreentire group of
individuals.Therun of SOMA can be described in following steps:

Step 1: Defining controlling parameters tiealgorithm.

Step 2: Generatingheinitial population and evaluatintpe fitness
function.

Step 3: Migrating individuals, evaluating their new fitness values.

Step 4: Testing for stopping condition. If no stopping condition is
accomplished, go back to Step 3.

Step 5: Assigningthe solution.

Each individual from populatio® is defined bythe N-dimensional state vector
Xq. Positions of individuals are félheinitial population defined byhe equation:
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Xq,n = Xnmin +rndq,n( erax X1min) (1-4)

wherexg, denoteshen-th variable oftheg-th agent,d¢, min; Xamatt denoteghefeasible
interval forthen-th variable andnd,,, is arandom number frortheinterval @; 16with
theuniform distribution of probabilityThevalues of objective functiofare evaluated

for each individual. These values of objective functions are shared wfhi&imhole
population.

Theiterative process of findinthe global optimum consists @given number of
migration loopsl. During amigration loop, individuals move as depictedFig. 1.12

andFig. 1.13and appraise new positionsthreresearched decision space with values of
the objective functions.
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x ¥ LEADER (i-1)
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06! 4
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.7 \
X \
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x ()
Fig. 1.12 Principle ofthemigration usinghe”All ToOne” variant 0oSEOMA.
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Fig. 1.13 Principle of themigration using the AllToAIl" variant of SOMA,
different colors denotes different directiongtod migration between two agents

There are several strategies to accompéislefficient research othedecision
space. IPAlIToOnevariant, each individual migrates the position oftheleader from
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theprevious migration loop or ttheposition oftherandomly chosen individual. This
type of movement is depicted fig. 1.12 Theterm leader describéise position, where
thebest value otheobjective function was achieved@heleader remains ithesame
position withina migration loop.

In AlIToAll variant, eachndividual moves towards all other agents as depicted in
Fig.1.13 This approach seems to be more computationally demanding than
theprevious one, buheconvergace totheglobal optimum isusuallyfaster[10]. This
IS caused byamore systematic research tfeN-dimensional decision space and
sharingthefitness values.

Individuals can starthemovement in each migration loop either fraheinitial
positions defined by equatida.4) or fromthelast best position found duringgvious
migrations. Both approaches have their advantages and disadvaritagésst one
usually reachesheglobal optimum but can have problemsthespread oftheinitial
population does not cover all parts tberesearched space satisfactorijhesecond
one exhibitsafaster convergence usually, but tendstltepremature convergence if
thealgorithm remains imlocal optimum (all individuals move tthesame part of
thedecision space).

Themovement oftheindividual x, towards theindividual xq during thei-th
migration loop isdeterminedy:

tmp,,()=x,0 1) (X0 D x,{ 1) S—S:I' PO PRTY (1.5)

wheretmp, s is thevector specifyinghenew position ofthep-th individual resulting
from thes-th step ofthemovement totheg-th individual. ST definesthenumber of
steps for one migrations€ 1,2,é ,ST). TheparameterPL defines thelength of
thetrajectory. IfPL is equal to one, thetihe migration ends irtheposition oftheg-th
individual exactly. So called perturbation vecRRTV hasthesame size athevector
definingtheposition ofanindividual x and consists of zeros and oneRTYV is defined
for each migration bil randomly generated numbers:

el if rnd(n)>PR

PRTV(n) =)

{0 if rnd(n)¢ PR (1.6)

wherePR denoteghe probability of perturbation defined by usédiheperturbation has
thesame effect for SOMA athemutation for GA. If any part oPRTV is zero, then
thetrajectory ofthemigration does not head theposition oftheg-th individual as
depicted in Fig.1.14 Theperturbation approach should avoithedeadlock of
thealgorithm inthelocal optimum.
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Fig. 1.14 Explanation of influencing migration by perturbation ("AllToOne’
variant,ST= 3, PL=1.3)[PK 2].

Recommended values for parameters controllireyun of thealgorithm can be
found in[10]. Thelength ofthepath PL should be chosen frorheinterval l.1;3a
Thenumber of stepS§Tduring one migration loop should be fraheinterval @3; 206
the probability of perturbatiorPR should be intheinterval §.1;1.06 thenumber of
agentsQ is expected to be frontheinterval GlO;up to uses and thenumber of
migration loopd is assumed to be frotheinterval 4L0; up to usest Therecommended
intervals for these parameters are summarizdainl.l

Parameter Description Recommended interval
PL Length ofthe path al.1; &
ST Number of steps in one migration @3; 2ax
PR Probability of perturbation @.1; 1.&
Q Number of agents G10; up to user
I Number of migration loops G10; up to user

Tab. 1.1 Recommended values for controlling parametersSGMA algorithm
[10].

Thealgorithm was successfully used on many real live problems. Some of them
observed more than one objective. In every cdbemultiple objectives were
transformed into one singtbjectve function and optimized using basic sirgle
objective version c6OMA.

In [1] SOMA was tested on plenty of test functions and compared with
conventional evolutiorrg algorithms (DE, GA). It achieved at least comparable results
with conventional algorithmsThearticle [21] deals with aconvergence issues of
thealgorithm.Thedistributed version cBOMA is described if22].

Theproposed algorithm was [23] successfully applied for finding @noptimal
trace forarobot. Theresults obtained bOMA were better than from method based on
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simulated annealing. Authors [24] employ SOMA for theoptimization ofthetwo-
dimensional Henon map deterministic chaos model contr¢29h SOMA is used for
trimming anaircraft tothe steady state flight upatie various flight conditionsSOMA
was applied also for finding of optimal parametershefvibrating power generator as
described in[26]. Thearticle [27] deals withadesign ofalLoney’s solenoid using
themodified SOMA approach wittheadvance of so called normative knowledge that
assigns regions in decision space with better values of fithess funttiepaper[28]
introduces amodified SOMA aproach based omGaussian operator to solve
thereliability-redundancy optimization problems. According to our knowledge, SOMA
has been never used for solution of pure rabifective optimization problems by other
authors.

1.3 Dissertation Objectives

Themod important objectives othis dissertation thesis can be summarized into
thefollowing list:

1 Creation ofanew multrobjective technique based on setfianizng migration.

1 Study of convergence properties of tilewly proposed algorithm.

1 Implementation othe proposed algorithm for sahg of reatlife design
problems in electromagnetics.

Themost important objective of this dissertation thesis is to deavew
stochastic algorithm for sahg multi-objective optimization problems basezh
theprinciples oftheself-organizing migrating algorithnThe novel algorithm should be
able to solve problems witlnarbitrary number of input variables and objective
functions. Thealgorithm should reveahedesired number of Pareto front members.
These solutions should be as close as possilthetaue Pareto front but algbeclaim
onthediversity ofsolutions should be satisfied.

Theproperties othenewly developed metholave to be studied’heinfluence
of thecontrolling parameters dhealgorithm should be&lemonstrad Our goal is to
createanalgorithm that reaches satisfactory results preferably independent of its own
settings.Also, convergence properties diiealgorithm should be studied. It has no
sense to exploiatool that edbes not ensure convergence tteecorrect answer. As
described if29] thebehavior of convergence propertiestio¢ stochastic optimization
algorithms can be desbed usinghe so-calledfinite Markov chains.

Thecomparison ofthenewly originated algorithm with conventional methods
(described irAppendix ) should be doneot substantiateéheclaim for the proposed
multi-objective algorithm. Thecomparisons can be made on test problems with
thewell-known Pareto front. Tik enablesto evaluaé multi-objective metrics such as
generational distand@3], spread7] or hypervolumg30]. To maintain fairness of this
comparison, conventional methods shdutdperfomed using theriginal SOMA.

Furthermore, @omparative study with conventionally usddp u rnalé-
objective algorithms on benehark problems should be performed to show
theaccuracy oftheproposed algorithmAmong accessible algorithms belongs e.g.
NSGA-II (Non-dominated Sorting Algorithm [I][7]) and SPEA2 (Strength Pareto
Evolutionary Algorithm 2 After convergence dhealgorithm is proved satisfactorily, it
can be applied to solve electromagnetic design problems. Two types of problems should
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be considered: previously solved by other raolijective techniquegso that results of
MOSOMA can be comparedndnewly definedunsolved probles
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2 MOSOMA

This chapter introduces an originalMulti-Objective SeltOrganizing Migrating
Algorithm (MOSOMA). As described insubchapter Appendix 1 transforming
theMOOP intothe SOOP and use of singtébjective algorithm (e.g. SOMA]) is not
efficient for solution of multiobjective optimization problem3heoptimizer should be

able to solve constrained or unconstrained MOOPs having any number of decision
space variableBl and objectivesVl. Thealgorithm should handle witmulti-objective
prodems havingconvex, norconvexor discontinuous Pareto front. It should be able to
work with continuous and discrete decision space also.

2.1 Description of MOSOMA

Our novel stochastic MulDbjective Self Organizing Migrating Algorithm
(MOSOMA) was introduce in [PK 2], theextension oMOSOMA for soling MOOPs
having more than two objectivesas therpublishedn [PK 3].

MOSOMA combines two basic principleexploringthe N-dimensional decision
space defined itheoriginal SOMA, and choosinthenondominated set of individuals
from the current populatioin M-dimensionabbjective space

Therun ofthealgorithm can be described thefollowing steps:

Step 1: Defining controlling parameters diealgorithm.

Step 2: Generatingheinitial population, evaluating objective functions.

Step 3: Choosing external archive frothe current population.

Step 4: Migrating agents to members of external archive. Evaluating
objective functions for new positions. Updatihg external archive.
Selecting migrating agents for next migration loop.

Step 5: Testing for stopping condition. If no stopping condition is
accomplishedgo back to Step 4.

Step 6: Choosing final nordominated set frorthe current external

archive.

Themigration principle remainshesame as irthecase ofthesingle-objective
algorithm as described in subchapte?.6 Asthenumber of executed migration loops
increasesagentsexplorethe N-dimensional decision space more deeply.

Migration of agents is steered by information about objective valuthe afents.
All agents shargheexternal archive whertheso far found nosdominated solutions
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are stored. It ensures that members othepopulation hae anidea abouthe changes
in the objectives within different parts ¢he decision space.

Themainidea of MOSOMA is illustratedin Fig. 2.1 Thebasic principle is to let
theagents migrate towards memberstloé external archive. This procedure enforces
theagents to scan regions with best values of objective functionstfieriewpoint of

all objectives more carefully.

Thegeneral pseudoode of thewhole MOSOMA is depicted inFig.2.2
Thewhole procedure starts with random generatioragfoup of agent$(1) using
equation(1.4). External archivemembers are selected accordingnimn-dominated
sorting proceduredepicted inFig. 1.1Q In every migration loop, edected agents then
migrate towards members dEXT(iT 1) and their temporary locationsnp are
determined by equatiofl.5). Then,anew EXT(i) is built from thefirst non-dominated
front solutionsof nondominatedsorting oftheunion of EXT(i i 1) with tmp. This step
ensures some form of elitisnf. thenumber ofthefirst front solutionsis lower than
theminimal size spefied by theuser Nymin, EXT(i) is completed withthebest
solutions from advancing frontdJsually, thesize of EXT grows significantly with

every migration loop.
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Fig.2.1 Main principle of theMulti-Objective SeHOrganizing Migrating

Algorithm [PK 2].

After anew external archive is determinedet of migrating agents is
determined. There are several options, how to select these agent: e.g. theyagaimrem
thesame positions as definedthestart ofthealgorithm, their positions can be chosen
randomly for every iteration loop using equati{dm), also somenembers oEXT can
be chosen t@. According to our experience, it is suitable to Tilpartly with randomly
generated agen the premature convergence adocal optimum- advancing front can
be suppressedand with members oftheexternal archive(theregion of thebest
solutions is researched carefully which can speeitieyyhole procedure)

Migration proceeds untilastepping condition is met. Sincéenumber of
solutions inthefinal set EXT is usually much higher thanthenumber of wanted
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soluions onthePareto frontNey;, thefinal setP is chosen fronEXT so thatthefound
Pareto front is covered uniformly.

Start
Define initial population @1)
Compute objective functions tmp
Find external archive EXT
While i <1 | FFC< Nf,maxl EXT(I)l < Nex max
Forg=1:|Q( - 1)
Xq migrates to all members of EXT 1)
Compute objective functionstimp
End
Find EXT(i) fromtmpz EXT(i - 1)
While |EXT(i)| < Nex min
Find advancing front and crowding distance
Fill EXT; with best agents from advancing front
End
Chocse T agents to @
1++
End
Chose final set P from EXi)
End

Fig. 2.2 Pseudecode ofMOSOMA [PK 3].

Themain parameters and complex procedudodsthealgorithm will be briefly
described inthefollowing subchapters.

2.1.1 Controlling Parameters

Theuser has to sethecontrolling parameters oMOSOMA before it is executed.
Proper understanding of them is crucial for successful and efficient Ug€©8OMA
for optimization tasks.

Thecontrolling parameters are:

FFC Thenumber of fithess function computations
|P(2)] Theinitial population size

T Thenumber of migrahg agents

ST Thenumber of steps in one migration

PL Therelative length of patfor one migration
PR Theprobability of perturbation

Nex min Theminimal size oftheexternal archive.

Theinfluence of these controlling parameters on behavior of MOSOMA will be
discussed irthefollowing text. Therecommended intervals are derived on behalf of
their sensitivity analysigp{ease refer tsubchapteB.3).

2.1.1.1 Initial Population Size

Theuser sets withthe parameterH(1)| size oftheinitial population. According to our
experience, it is better to generate larger initial population, becaisexpedient to
research whole decision spadéiehigher value oftheparameter reduces speed of
MOSOMA just for initial population.Thespeed ofthealgorithm is controlled by
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number of migrating agent¥ and size of external archiv&XT| for consecutig
migration loops.

2.1.1.2 Number of Migrating Agents

TheparameteiT has only one restriction, number of migrating agents has to be lower
than thesize of initial population:T <|P(1)|]. With higher number of, research of
adecision space is more precise on one handhlespeed of MOSOMA decreases on
theother hand.lt is appropriate to choose this value similar to size of final- non
dominated setP]. Thestrategy for choosinghe migrating agents influences efficiency

of thealgorithm more significantly.

2.1.1.3 ParametersPL and ST

ParameteyPL andSTare adopted from original SOMA without any chanfieesetwo
parametergannot be set independently. They should be set saulyahigration does
not go throughtheposition of theagent fromEXT, which would cause redundant
computation of objective functions in previously examined poirthetlecision space.
Thecondition for settind®L andSTcan be made according to equatfard).
s&, 1, for "'s %2,...,ST (2.1)
ST

TheparametePL should be chosen from intervél.1; 36 butfor higher values,
agents can migrate out frothedecision spaceAs indicated inFig. 2.1, MOSOMA
assumes that solutions closerthetrue Pareto front lie close to positions of agents
currently saved ifeEXT. Some ofs-multiples of ratio betweeRL and ST should acquire
valuesslightly higher or lower than onelheother steps ofthemigration are also
necessary, because they should atb&bottleneck of MOSOMA in region of local
optimum.

Theobjective functions are computed for each temporary positign Then,
anew external archivé&XT(i) is determined byhenondominated sortingheunion
betweenEXT(i i 1) andset ofall tmp positions. In one migration loopthenumber of
FFC(i) is given bythesize oftheprevious external archivEXT(i-1), thenumber of
migrating agentd andthenumber of stepST:

FFC(i) =|EXT(j- 1| © St (2.2)

2.1.1.4 Minimal Size of External Archive

Theminimal size oftheexternal archiveis important primarily forvery conplex
problems.In those cass, MOSOMA is not able to find sufficient number of non
dominated solutions during first migration loops. It is beneficial totfi#texternal
archive with solutions from advancing fronts to keep efficiency of those migration
loops.ParameteNexmin Cannot exceedize oftheinitial population P(1)| and should be
similar tothesize ofthefinal nondominated sef)|. As discussed aboviae number of
objective function computationsFC increaseswith growing external archive size
Usually, MOSOMA fing largernunmber of nondominated solutions. ThuBnal size of
EXTis greater than paramet€g,min.

2.1.2 Migration towardsExternal Archive

MOSOMA exploits theconcept ofexternal archive as defined [A8]. Theexternal
archive EXT stores all meanwhile found members thfenondominated setP.
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Searching ofthenondominated seP takes place irtheobjective space. MOSOMA
usestheapproach inwduced by Deb et al. ji1] as described isulchapterl.2.3

Minimal size ofEXT is defined bythe parameteNexmin. If size of P (members of
thefirst front) drops to less thaNexmin, theremaining positionsn EXT are filled with
members of advancing fronts with best values of so called crowding distance. This
metric estimatesthedensity of thesolutions surroundingaparticular solution[7].
Thecrowding distance is derived frothepositions ofthesolutions inthe objective
space(see subchaptdr.2.4. Theless crowded solutions are preferred.

As in case of singleobjective SOMA, individuals migrate througtheN-
dimensional hypeplane of input variables and try to find better solutions. MOSOMA
usesthestrategy which should be called "AllToMany’. Every individual migrates
towards all members dheexternal archive as depicted kig. 2.1 We assume that
using equatior{1.5) with thepath length paramet&L slightly larger than oa should
provide new solutions, which are placed closeh#true Pareto front.

Since size of external archive grows with every migration lasymally, thetime
devoted for consecutive migration loops increases also. Ensuomioig accurate
research ofheregion of current nolominated se® is anadvantage of this strategy.

2.1.3 StoppingConditions

Taking into accounthe previously described behavior thfe algorithm, following three
stopping conditions are combined:

1 Thetotal number of migration loogds

1 Themaximal size of theexternal archive Nexmax (usually amultiple of
thedesired number of Paretgptimalsolutions|P)).

1 Thelimit for objective function computatios=C.

Thesetting of appropriate stopping conditions is very important from
the computational time viewpoint, especially. Usitiggabove described “AllToMany”
strategy,increasingsize of external archive brings more computations of objective
functions, which is usually very CPU time consuming. In MOSOMw ratio of CPU
time devotd for two consecutive migration loopstypically greater than one

Combination of these three stopping conditions ensures that optimization process
stops inanestimable time andhat sufficient number ohondominated semembers
(candidate®f the Pareo fronf) are found.

2.1.4 Choice ofFinal Non-dominatedSet

Since thesize of external archive grows usually very quicklyovel approach for
selecting final nordominated seP from current external archive was proposed in
[PK 2] and[PK 3]. This procedur&nhancsthespread of final Paretoptimalset.This
procedure is ap@d only ifthesize of external archive is larger thizne desired number
of nondominated solution¢P|, after any ofthestopping conditionsare met First, M
extreme solutions (having minimal value of particdijgrare saved int®. Therest ofP

is filled with members oEXT so that members d? coverthePareto front uniformly.
Two objective andM-objective varianof this procedurare discussed ithefollowing
text
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2.1.4.1 Two-objective Method

Thecrowding strategy providdberequirement on MOEAs tbnd solutions with good
spread. In order to improve its efficiency, we propose another additional approach based
on measuring Euclidian distances amdhgnondominated solutions as described in

[PK 2].

This strategy works with all members thie discovered nolominated seEXT
saved intheexternal archiveThestrategy assumes thBXT containsa higher number
of nondominated solutions thafP|. First of all, thenondominated set is sorted
according tothefirst objective intheascending order. Thethelength ofthePareto
front eis computed by:

e=§\/ a(f.(p -f(p B (2.3)

p=2 \ m
wheref(p) is mth objective function ofhe p-th solution.

After this proceduretheideal distance between two uniformly spread solut&®ns
is computed:

e
& _|P|—-1 (2.4)

where |P| is thedesired number of Paretptimal solutions. Extreme slutions with
minimal values ofboth theobjective functions are automatically assignedhadirst

member andhelast member othefinal nondominated seP. Then, j-th member of
thefinal setP is that onenavingthe minimal valueof metricD;:

D =le {j B elC
) & i B e (2.5)
i=23..]P -1

whereg is computed usingquation(2.3) wherej replacesp.

Theresult of applyingthepreviously described procedure on external archive
containing more than 200 solotis is depicted irfrig. 2.3, Final nondominated seP
contains 25 solutions withery nice uniform spread.
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Fig. 2.3 Thechoice of final nordominated seP from external archiveeXT for
two-objective Pareto front.
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2.1.4.2 M-objective Method

Unfortunately, thepreviously described twobjective approach cannot be directly
extended for Pareto fronts having more than two objectives. In fact, when sorting
thesolutions of amulti-objective M >2) Pareto front according to one of
theobjectives, thesorted solutions are not neighboring in senseatdpology as
depicted inFig. 2.4. Also, various curved shapes of mudbjective Pareto fronts can
makethe choice ofthefinal setP from EXTimpossible according to regular elements of
aparticular hypervolume (e.g. elementsacurface foM = 3, elements o& volume for

M =4, etc.).

Therefore, we have proposethew method forthechoice of thefinal non
dominated seP from theexternal archiveEXT in [PK 3]. We measuré¢he Euclidian
distance amonghefound solutions. Firstyl solutions with minimal values of particular
fm are saved t®. Particular solutions are then successively savedPintatil P does not
containthedesired number of solutions. Alwaytheg-th solution fromEXT having
themaximalD (thesum of Euclidian distances towards all membertheturrentP) is
chosen:

D=3 Ja( .(p) -.(q)) 2.6)

p=1

An example of this procedure can be found-ig. 2.5. A part ofthesurface of
theparaboloid buildgshe Pareto front. Red crosses méhnke chosen solutions setP. It
is obvious, thathechosen solutions are spread altimgwhole Pareto fsnt uniformly.
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Fig. 2.4 Thef,-f, view of threeobjective Pareto front, solutions are sorted
according tahefirst objective
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Fig. 2.5 TheM-dimensional choice of final nedominated seP from external
archiveEXT[PK 3].

2.1.5 ConstraintsHandling

Almost every realife optimization problem is influenced by some constraints.
Theconstraint divideshedecision space into two parto calledfeasible and infeasiél
region. A good optimizer has to deal wittheconstrains and considerthePareto
optimal solutionsresulting fromthefeasible region only. WessumeJ inequality
constrains g as indicated in equatiqi.1).

Minimize {,(x), m=12,...,M
subjectto  g(x)2 O, j4,2,...,3,
XM ¢ XV eX? n E2,..,N.

Note thattheflower tham inequality constraint can be transformed ithe figreater
thard constraint usinghe duality principle[12]: theconstraint is multiplied by 1.

MOSOMA employsaslightly modifiedpenalty function approach (e Jg®1]) for
handling with constraint€&very violation of any constraifitasanimpact on worsening
the objective functions,. First, volationV, from normalized-th constraint functioor
i-th solution is calculate[81]:

v(x):ﬁ%(xﬂ, it g, (x)<0;

i X _ (2.7)
10, otherwise

Thereatfter, objective functisrare slightly modified to considéneviolations from allJ
constraint functions:

J
fc,m(xi) = fm(xi) _{Rmé Vj(xi) (2-8)

j=1
where f.,, denotes modifiedmth objective function andR, stands forapenalty
parameterThis constant is set for every objective function. It is introduced to equalize
themagnitudes of both parts tferight hand side of equatidi2.8). Our approaclsets
themaximalvalue of particular objective functidp,max (true or found by optimizeRs
Rn. Equation(2.8) can be then rewritten to:
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J
fc,m(xi) = fm(Xi) +fmmaxa Vj(Xi) (29)
j=1
Use off,,max Values ensures, that objective functions of infeasible solutions are worsen
sufficiently.

2.2 Conclusions

Theextension ofthe singleobjective seHlorganizing migratg algorithm has been
derived in this chapteheproposed algorithm is applicable on problems having any
number of decision space variables and objective functions. MOSOMA is also able to
deal with constrainedptimization problems.

A novel procedure for clusingthefinal nondominated set has been propaosed
This approach significantly enhancém uniform spread othefinal non-dominated set
found bythe optimizer. Themost important contributions of this gtar were presented
in thejournal Radioengieering [PK2] and in proceedings oftheconference
Radioelektronik&2012[PK 3].

25



3 Convergence of MOSOMA

Thestudy of convergence properties is very important for every novel optimizer.
Generally speakingheconvergence should be ensured for every numerical method.
Nevertheless, theoretical proofs of stochastic algorithms that are strongly influenced by
random processes are very rare. Thereftireconvergence properties of stochastic
optimizers araisuallyshown on benchmark methods first.

In this chapter, comparison of our novel algorithm with conventional methods
transformingaMOOP to SOOP is presented first to substantthienecessity of
developingan e w i p u robjectivaroptimizer based on selfganized migration.
Next, theresults oftwo comparative studies aderived here to showhe efficiency of
MOSOMA in context of commonly used optimizers. Alg®sensitivity analysis of
thecontrolling parameters was performed to provide recommendedstaltielpother
userswith propely setting MOSOMA Finally, the proof for theoretical convergenas
MOSOMA is derived.

3.1 Comparison with Conventional Methods

Conventional methods transforthe MOOP into theSOOP, so thatM objective
functions are weightedy some coefficients and summed to build one composed fitness
function. Short overview of these methods is presentedpgpendix 1 Probably
themost popular conventional method tiseWeighted Sum MethodWSM). This
method is very simple for implementation btiteproper setting of weights for
particular objectivesapriori is usually very complicated. This disadvantage of
theWSM can beshown orfollowing simple twoevariable and twebjective problem:

X (3.1)
0.1¢ x, 01,

0¢x, d.

ThePareto front of this problem is *depicted Frig.s.*l It is obvious thgtextreme
solutions of thePareto front aref ={0.1;10} (x ={0.1;0}) and f ={1; 1}
(X" ={1; 0}).
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10}
w={0.91; 0.09}

£0

w = {0.50; 0.50}

0 0.2 0.4 0.6 0.8 1
£

Fig. 3.1 Pareto front with highlighted extreme solutionsasimple twceobjective
problem[PK 1].

Applying theWSM on equatior§3.1) results in:

1+
F=wf ,f, wXx WETXZ (3.2)
Theoptimality conditon of thefirst order is:
de _  1+X,
dx, =W W, X (3.3)

As stated before, sum of weights equals towne w, = 1. This equation and equation
(3.3) build alinear system. Solution of this system for extremes of Pareto front is
w; ={0.91;0.09} and w,={0.5; 0.5}, respectively. It is obvious, that weights of
theobjective functions shdd vary only in intervals w(1)N @.50;0.91a AT A
w2~ 0.09;058 / OEAO AT 1 AET AOGET T O Tth&Eexxeh& CEOET ¢
solutions.

Most interesting thing on this problem is thia¢ use ofthe WSM with weighting
vector w={0.5; 0.5} leads to one oftheextreme solutions. Although relative
importance of botlthe objectives ighe same thesolution is optimal only from point of
theview of thesecond objective functiofa. Instead of findinga solution inthemiddle
of the Pareto front fronFig. 3.1, solutionf ={1; 1} is found.

3.1.1 Comparisonof MOSOMA with WSM and WRMM

This subchapter is aimed to emphagimshortcomings of convemtnal methods based
on summing of all objective functions into one fitness function to retrealvhole
Pareto front. Pareto optimal solutions found by pure rallggctive algorithm are
compared with solutions obtained using WSM aNdighted Rotated Metridlethod
(WRMM) with conventional singk®bjective algorithm. We have used conventional
SOMA with WSM and WRMM and our neveptimizer MOSOMA. Thedetailed
description of bothhe conventionaklgorithms can be found ippendix 1
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Theillustrative comparison is made artwo-objective twevariable problem:
f,=x,
f,=1 % x 0-:lsin(@x )
0¢x d,
-2 @, 2.

This problem hashePareto front with three parts: two of them convex and one non

convex as depicted ifig. 3.2 Thedetailed description of this test can be found in
[PK 1].

Multi-objective optimizers should meet two main goals: achiethegolution as
close tothetrue Pareto front as possible, and obtairtimgsolution withtheuniform
spread onthePareto front. These two conditions together ensurethieathole Pareto
front is found.

(3.4)

true Pareto

X Weighted Sum

X Rotated Weighted Metric
X MOSOMA

12¢

0 0.2 04 0.6 0.8 1
50

Fig.3.2 Three Pareto optimal solutions obtained by WSM, WRMM and
MOSOMA [PK 1].

Thefirst goal is represented kgymetric generational distanéeD introduced by
Veldhuizen in[13] (for thedetailed definition see subchaptdr2.]). It is amean
distance (usually Euclidian) between any solution found thgalgorithm and
theclosest membeof 500 uniformly spread true Paredptimal solutions. With incre
asing accuracy dhealgorithm,the GD converges to zero.

Thesecond goal can be expressed withet r i ¢ spread @[7]propos:
Thespread measures mean error of any distance (usually Euclidian) dnesagted
Pareto front solutions and their ideal distance. Also this metric decreases with
increasing accuracy tfiealgorithm. Againthedetailed definition of this metric can be
found in subchapted.2.1

28



Algorithm |Metric | FFC(-)  GD(-) P tepu(s)
WSM average|5.70<10° 1.11x10% 1.10x10° 4.5%x10*
variance - 1.25x10% 2.40<10% 2.26x10°
average|5.70x<10° 3.23x10° 2.54x10" 2.30x10°
WRMM . : 5 5
variance - 3.63x10° 2.10x10° 6.80x10
average|2.8710° 3.50x10° 7.74x10? 4.85<10°
MOSOMA —— . .
variance] 4.15x<10° 3.63x10° 1.63x10? 1.76x10°

Tab. 3.1 Comparison otthe GD, EBC and tepy using theWSM, WRMM and
MOSOMA [PK 1].

For thesimulations, controlling parameters of all three methods were set to
thesame values: number of agent8(1)=20, normalized length of path
PathLength= 1.3, number of stepST = 3, the probability of perturbatioiPR=0.1 and
thenumber of final Pareto front solutioM&x = 10. For WSM, 10 equidistantly spaced
weights fromtheinterval @; 1 were chosen. FOWRMM, therotation anglea took
uniform values from 0° to 90°. Fahe conventional methods, 5 migration loops were
computed FFC = 5700). Theminimal size oftheexternal archive foMOSOMA was
Nexmin=5. Stopping conditions were: 5000FC and 100 solutions irtheexternal
archive. All simulations were performed hundredesTheaverage results are listed in
Tab.3.1 Pareteoptimal solutions from one randomly chosen run obtained by all three
methods are then depictedHig. 3.2

Theweighted sum method ihefastest one but achieves worst results in both
themost important metric&D a n d Thgmethod was not able to find any solution in
thenon-convex part othetrue Pareto front.

Therotated weighted metric method is able to reach althesthole Pareto front
including its norconvex part. This method has problems to rebelextreme solutions
attheends ofthePareto curve. This ingsfection could be possibly fixed using another
weighting vector. WRMM method achievéloe best mean value adhe GD metric and
good value of .

MOSOMA revealsthewhole Pareto front witlthe best spreadlhe mean value of
themetric GD is slightly worse than in case WWRMM what is caused by less number
of FFC. TheEuclidian distance betweethegenerational distance artiespread of
MOSOMA andthe hypothetical vector {00} wastheleast one.

We can claim that onlthepure MOEA shows ability to reve#thewhole Pareto
front and therefore these algorithms are necessary when sawingtimization
problem having multiple objectives.

3.2 Comparison with Benchmark Methods

Applying anew multrobjective optimizer on large suite test problems ighefirst
logic step to ensure, thttie proposed method is able to solve molijective problems
efficiently.

Themulti-objective optimization is assumed to achieve two goalth@same
time:
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1. Theelement othe computed nordominated seP has to lie intheminimal distance
from thetrue Pareto fronP of theproblem.

2. Elements otf*]esetP have to be distributed uniformly. This ensures thatwhole
Pareto fronP has beeround

Thequality of achievements nabe expressed by means of metrics applied for
benchmark problems with known Pareto fronts.

3.2.1 PerformanceMetrics

Large number of evaluation metrics can be found in referdddg¢sWe present here
only themost used. These metrics enable us to compare performance of MOSOMA
with previously published studies about other MOEAs.

3.2.1.1 Generational Distance

Thegenerational distanceGD) was introduced by Veldhuizen ii3]. This metric
evaluatesthequality of thecomputed nomominated set fromtheviewpoint of
accuracyGD measureshe Euclidian distance between membefsetP andmembers
of aset of 500 uniformly spread true Pareto front memBerfhe GD metric is defined

by:
P
ad;’

GD=-12=
i

(3.5)

where d, stands fortheminimal Euclidian distance measured timeobjective space
betweenthep-th solution fromthecomputedP and thecorresponding member of
thetrue Pareto fronP :

| M . 2
d, = rlr(1:|ln\/ma:_1( f.(p) - fm(k)) (3.6)
Here,k denotegheindex ofthesolution inthesetP” which hastheminimal distance to
thep-th member othesetP. Thelower value ofthe GD metric is achieved,themore

accuratahesolutionis. Fortheideal solutionthemetricGD reaches zero.

3.2.1.2 Spread

Thespread ( p) was i [}t This dnaticendasutegheqiabtyp of i n
thedistributionof thecomputed seP. It is evaluated irthe objective spacelhespread
metric measuretheratio betweerthesum of deviations from &rage distances among
neighboring Paretoptimal solutions anthesum of all distanceslhesetP has to be
sorted suchaway so thattheneighboring solutions can be found. Therefore, such
adefined metric can be computed only for telgjective problemsThespread can be
computed using equation:

2 |P|

a de,m+ aJdp _davJ
D =& P2 - (3.7)
é. de,m-|-| P| ®avg

m=1
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whered, denoteghe Euclidian distance betweehe p-th and p + 1)-st solution fromP,
dem denoteghedistance from computed extreme solutiongh®true ones andlayg is
theaverage distance among all computed solutions

Start
FindsetE= {g} ! i,j" {1, 2[Ppéi, j
Remove mig; from E and save it to MST
Save points i and j to cluster,C
K=1
While IMST|i |P|
Remove mig;¥ £:(1°e C je C)! kv {1, 2K}é,
Save it to MST
Ifiv G~ jN G
K=K -1
Make union of both clusters
Elsafie C je C
K=K +2
Createa new cluster foi and j
Else
K=K +1
Createa new cluster foi or j
End
End
End

Fig. 3.3 Thepseudocode of théruskal algorithm findingST.

We have proposednovel method for computinthe spread metric for problems
having more than two objectives alffleK 3]. Theprocedure is based on finding so
called minimum spanning tre@MST) of nondominated seP. TheMST is defined in
[32]:

Givenaset of verticesa spanning tree of their graph @subgraphthat is
atree and connects athevertices togetherA minimum spanning tree (MST) is
then a spanning tree with weighess than or equal ttheweight of every other
spanning tree.

For aset of pointsMSTconnects these points so that all are connected. There are
no cycles inthetree andthesum of lengths of its branches is minimal. Searching for
theMSTis the NP-complete problem.

For our purposesheMST hast to be found exactly. Therefore, we have to use
ananalytic method for finding theMST, e.g. theKruskal algorithm [33].
Thepseudocode fottheKruskal algorithm can be found iRig.3.3 First, setE
containing distances between every two poirdsdj in setP is computed. Then, we
removetheminimal g; from E and save it intahe MST until the MST contains | - 1
membes. Connected pointisandj are saved int@clusterC. Edges between poinis
andj that are inthesame cluster are not considered. If poingadj are in different
clusters, these clusters are united. If any of poiotg does not belong to anyudter,
we save it int@anew cluster.
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X P members
— MST

Fig. 3.4 Theminimum spanning tree dfiethreeobjective Pareto front.

An example othe MST of the Pareteoptimal solutions building part ofasphere
is depicted irFig. 3.4. Obviously,thelengths ofMST branches are equal for uniformly
distributed points. Thereaftethespread metric defined b§3.7) can be evaluated for

any number of objectivesTheextendedM-di mensi onal # [can eba d
computedPK 3J:
M M
ade,m+ a‘dp _davJ
D, = P2 (3.8)
é. de,m+|MST| Gavg
m=1

where meaning of all symbols remaittesame as in equatiof8.7). Thedescribed
approach can be applied to problems veitrarbitraly number of objectives (including
two).

If computed solutions ardistributedideally onthetrue Pareto frontthe spread
metric becomes zero. Commonly used algorithms usually achigwmead between 0.1
and 0.7]11].
3.2.1.3 Hit Rate

Hit rate HR is avery simple metric expressing efficiency tifesearch. It has been
defined in[14]:

HR:ﬂ 1D0% (3.9)
FFC

where P| is thetotal number ofthefound nondominated setmembers, andFC is
thetotal number of evaluatienof objective functionsCertainly thehigher values of
HR indicate thebetter efficiency ofthealgorithm since only theregion containing
Pareto front members is researched.

3.2.1.4 Hypervolume

Thehypervolume metric HV evaluates themulti-objective optimizers from
theviewpoint ofthespread antheaccuracy athesame timeHV measureshevolume
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in theobjective space, which islominated by thesolutions fromthefound non
dominated se [13]. For each solution from, thehypercube volumg, betweerthe p-
th solution and areference pointW is computed. Thenthehypervolume can be
defined:

(3.10)

Here,v, denoteghehypervolume betweepth point fromthenon-dominated sef and
thereference poinW. Total hypervolumeHV is theunion of individual hypervolumes
Vp as depicted irFig. 3.5. Theposition ofthereference point can be simply defined by
avector composed fronthevalues oftheworst objective functions otheextreme
solutions ofthetrue Pareto front.

Obviously, values othe HV metric are significantly influenced likie magnitudes
of individual objectives. Therefortherelative hypetvolume metricHVRwas proposed
in [13]. Thehypervolume ofthecomputed seP is normalized withthe hypervolume
size ofthetrue Pareto fronttilesame set of 500 uniformly spread solutioas in
thecase ofGD, is used)13]:

HVR=iﬂg§l (3.11)
HV (p*)
1 - .
0.75 b
o

0.5 E
0.25+ E

0 1 1 1 1

0 0.25 0.5 0.75 1

£ ()
Fig. 3.5 Meaning ofthe hypervolume metric.

Therelative hypetvolume metric canrise with theincreasing accuracy of
thecomputed solutiorP. Therelative hypetvolume metricreachesone fortheideal
distribution ofthecomputed Pareto optimal sBt Usually, therelative hypetvolume
error is given by:

errorHV =[1- HVR (3.12)

Similarly to thepreviously described metrics, solutions wébetter spread and
accuracy can reachsmaller value othehypervolume error.

33



3.2.2 Experiments

We have made two comparative studies of MOSOMA with other +objéctive
optimizersthat exhibit very good perfmance on various problenfiNSGA-Il, SPEA2J.
Brief description of these algorithms can be foundppendix 2

We have published results for two large test§HK 2] and [PK 3]. First one
considers various types of twabjective prdlems. Thesecond paper is focused on
MOSOMA efficiency when it is solving problems with more tha bbjectives(three
objective problems have been used so tidainedresults can be displayed easily)
Definitions of theused benchmark problemsvith their properties can be fourid
Appendix 3

3.2.2.1 Two-objective Problems

Results of MOSOMA were compared with results obtained by N8@Ad SPEA2 in
[PK 2] on SC1, SCH1, FON, POL, ZDT1 and ZDT2 problemsth thealgorithns
wereset to provide 50 Pareto optimal solutions and to comiatebjectivefunctions
25000times Therefore, parametdfFC of MOSOMA was set tdhesame valueo
satisfy fairness othecomparison Thequality of proposed solutions was measured by
hit rate, generational distance and spread metit®controlling parametersof
MOSOMA were set téhefollowing values:

Thetotal number of computations tifefithess functior-FC = 25000.
Theminimal size ofthe external archivéNexmin=20.

Thesize oftheinitial populationP(1) = 50.

Thepath lengtiPL = 1.3.

Theprobability of perturbatioR=0.1.

Thenumber of stepST= 3.

= =4 4 A4 A4 A5 -2

Thenumber of migrating agenis= 25.

All algorithms were run 10@imes, statistic values are then summarized in
Tab.3.2 (HR metrig), Tab.3.3(GD), Tah 3.4(q) andTab.3.5(FFC). TheHR metric is
presented only for MOSOMA, because SPEA2 and N3$IGdoes not work with
external archive ahprovide only requested number of rdmminated solutionand do
not keep other nedominated solutions found during tbptimization Thehit rate
would bein this case only 0.%.

Algorithm | Problem| SC1 | SCH1 | FON POL | ZzDT1 | ZDT2

Average| 28.30| 53.46 | 12.39 | 23.86 | 11.46 | 29.08
Variance 151.55 73.39 | 11.56 | 62.04 | 15.07 | 74.17

MOSOMA

Tab. 3.2 Results otheHR (%) metricfor MOSOMA.

As can be seen MOSOMA achieves comparable rexflt$<SD metric as
optimizers SPEA2 and NSGA (seeTab.3.3). It should be noted here, that usually,
MOSOMA executed less number thidre other algorithms as indicated Trab.3.5. On
theother hand, MOSOMA excels in spread metric values. It achieved significantly
better values ofpfor all test problems (sekab.3.4). Values of all metrics are worse for
theZDT1 and ZDT2 problems having large number of decision space varidbes.
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robust settings otheoptimizer (higheP(1), FFCé ) shoul d be wused for
problems.

Pareteoptimal solutions found by MOSOMAre depicted irFig. 3.6 for all used
test problemsRandomly chosen results were taken. As can be seen, MOSOMA reaches
thetrue Pareto front with very good spraadall casegexcept ZDT1 problem

Fig. 3.6 Pareteoptimal solutions found by MOSOMA: test proble®€1 SCH1,
FON, POL,ZDT1 andZDT?2 (from thetop left tothebottom right)[PK 2].
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