KABINY PRO CESTUJÍCÍ DOPRAVNÍCH LETADEL
AIRLINERS PASSENGER CABINS

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTHOR
LUBOŠ JANHUBA

SUPERVISOR
ING. RÓBERT ŠOŠOVIČKA, PH.D.

BRNO 2008
Anotace

Moderní letecká doprava nastoluje vysoké nároky na všechny typy letadel. Při rostoucí poptávce trhu je nutná vysoká kapacita. S nárůstem přepravených osob se zvyšují požadavky na uspořádání kabiny pro cestující, bezpečnostní opatření a servis během letu. Cílem práce je vytvoření uceleného přehledu používaných kabin dopravních letadel a základních požadavků z různých hledisek.

Abstrakt

Modern air traffic creates difficult needs for all type of airliners. Because increasing market demand high capacity is necessary. Increase of passengers brings enhance of board organization, emergency provision and passenger service. Purpose of this work is to introduce summary of using board organization and basic requirements.
Klíčová slova

Dopravní letadlo Airliner
Kabiny letadel Airliners Cabins
Paluba letadla Airplane board
Letecká doprava Air Traffic

Bibliografická citace

JANHUBA, L. Kabiny pro cestující dopravních letadel.

Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2008. 44s. Vedoucí bakalářské práce Ing. Róbert Šošovička, Ph.D.
Prohlášení

Prohlašuji, že jsem bakalářskou práci vypracoval samostatně a že všechny použité literární zdroje jsem správně a úplně citoval. Bakalářská práce je z hlediska obsahu majetkem Fakulty strojního inženýrství VUT v Brně a může být využita ke komerčním účelům jen se souhlasem vedoucího bakalářské práce a děkana FSI VUT.
Obsah

ÚVOD... 6
1. Historie ... 7
 1.1 Počátky letectví .. 7
 1.2 Vznik komerčního letectví v meziválečném období 8
 1.3 Proměna dopravního letectví po druhé světové válce 9
 1.4 Příchod proudových letadel ... 9
2. Technické požadavky na kabiny dopravních letadel 9
 2.1 Požadavky stanové normou FAR/CS(JAR) 25 .. 9
 2.1.1 FAR/CS 25 ... 9
 2.1.2 Nouzové východy .. 10
 2.1.3 Nouzová evakuace .. 11
 2.1.4 Vstupy .. 11
 2.1.5 Sedadla, bezpečnostní pásy, pohodlí .. 12
 2.2 Konstrukční doporučení ... 13
 2.2.1 Trup ... 13
 2.2.2 Sedačky ... 14
 2.2.3 Ochrana posádky a cestujících proti působení výšek 15
 2.2.4 Vstupní dveře .. 16
 2.2.5 Nouzové východy .. 16
 2.2.6 Nouzová opatření .. 17
 2.3 Cílové skupiny cestujících ... 17
 2.4 Psychologie cestujících ... 18
3. Kabiny vybraných dopravních letadel .. 18
 3.1 Kabiny letadel pro krátké(regionální) lety .. 19
 3.1.1 ATR 72 .. 19
 3.1.2 Saab 2000 ... 20
 3.1.3 Embraer 120 Brasilia .. 22
 3.1.4 Srovnání vybraných letadel pro regionální lety 24
 3.1.5 Závěr ... 25
 3.2 Letadla pro středně dlouhé(kontinentální) lety ... 25
 3.2.1 Airbus A320 ... 25
 3.2.2 McDonnell Douglas MD90 .. 28
 3.2.3 Boeing B737 .. 31
 3.2.4 Srovnání letadel pro kontinentální lety 33
 3.2.5 Závěr ... 34
 3.3 Letadla pro dálkové (mezikontinentální) lety .. 34
 3.3.1 Boeing 747 ... 34
 3.3.2 Airbus A380 ... 37
 3.3.3 Srovnání letadel pro mezikontinentální lety 41
 3.3.4 Závěr ... 42
ZÁVĚR.. 43
LITERATURA.. 44
ÚVOD

Moderní technické myšlení přechází od obecných řešení k stále více konkrétním. Dynamicky rostoucí moderní letecká doprava tento trend následuje. Použitelnost každého dopravního letadla je závislá nejen na vnějších technických parametrech ale také na vnitřních parametrech kabiny pro cestující dopravních letadel. Aspektů ovlivňujících vhodné uspořádání kabiny je celá řada, například požadavky zahrnující stanovené normou, vybavení, kapacita cestujících, pohodlí a komfort cestujících.

1. Historie

1.1 Počátky letectví

Touha člověka objevovat nové prostory a přístupy pohybovat se rychleji, překonávat a posouvat hranice možností vede lidstvo celé věky smérem kupředu na cestě pokroku. Jedna speciální možnost, jeden unikátní prostor provokuje a vyzívá člověk již dávných časů antiky. Tímto prostorem je nebe a výzva volný let. První seriozní kapitoly této snahy se datují do dob osmnáctého století v podobě prvních teoretických poznatků o samé fyzikální podstatě letu stroje těžšího než vzduch. Prvními základními stavebními kameny se stali teorie sir Isaca Newtona, bratří Bernoulli a dalších. Teoretické poznatky jako jeden z prvních zpracoval sir George Cayley a sestavil základní pojmy aerodynamiky. Sir George Cayley bývá označován za otce moderního letectví, během celého života se věnoval vývoji konstrukcí letadel a stvořil řadu do konceptů, které byly inspirací do budoucna. K opravdovému zrození leteckého letectví dochází až s prvním úspěšným letem bratří Wilbura a Orvilda Wrightů 17.prosince 1903. První let neměl sice dlouhého trvání na výži potvrďl možnost letu stroje těžšího než vzduch.

V průběhu dalších deseti let dochází k pozvolnému rozvoji letectví, obloha se začíná pomalu a ale jistě zaplňovat výtvary lidské představivosti v různých tvarů a velikostí v počátcích dvacátého století vznikají první dopravní linky mezi městy v Evropě a Spojených státech. S příchodem první světové války začíná vývoj letectví jednu z mnoha revolucí investice do vývoje se téměř přes noc z násobí o desítky procent. Letadla díky své vysoké použitelnosti při bojových a průzkumných operacích zažívají obrovský nárůst produkce, vývoj kráčí mírovými kroky kupředu. Po skončení války v roce 1918 svět letectví byl kompletně proměněn létající, rychleji a dál. Vítězství stály disponují obrovským přebytkem bombardovacích letadel pro které v dobách míru není využití a jejich provoz se stává proto neúnosným. Část z těchto strojů přechází do služeb civilního letectví a ve formě dopravy poště cestujících. Počátkem dvacátých let je již tedy scéna pro dopravní letectví ve formě katerou známé dnes připravena, čeká se již jen na orchestr a herce v podobě dopravních aeroliníí a masových vývojů dopravních letadel.

vzducholodí se stal 6. květen 1937 kdy při přistání Hindenburgu v New Yorku dochází k tragickému vznícení vodíku a následné zkáze a úmrtí 35 cestujících. Pár následujících let vzducholodí už je pouze doznívající hudiob která nakonec utichá nadobro.

1.2. Vznik komerčního letectví v meziválečném období

Hlavním uplatněním dopravních letadel této doby je transport pošty, pasažérů, jako první nasazuje v roce 1930 Boeing Air Transport. Tento personál poskytuje oběma palubním komfort společnosti a zvýšenou zájem investorů během počínajícího akciového šílenství konce dvacátých let.

Třetí patří mezi technický rozvoj letadel ale i znatelný nárůst palubního komfortu. Nejvýznamnější změnou je zavedení palubního personálu stewardů, které jako první nasazuje v roce 1930 Boeing Air Transport. Tento personál poskytuje občerstvení, udržuje palubu letadla v čistotě a někdy poskytuje pomoc při překonání tlakových změn. Personál z větší části tvoří ženy, které musí splňovat přísné fyzické parametry jako například výška, váha a věk.

Kabinys jsou zvukově izolovány a vybaveny ventilací. Kapacita DC-2 je 14 pasažerů s možností dosažení rychlosti 273,5 km/h. Douglas DC-3 je schopen transportu až 21 pasažerů stejnou rychlostí. Speciálou DC-3 je lůžková úprava která poskytuje doposud nevidaná komfort na palubě letadla. Popularita těchto modelů byla nevidaná DC-3 v době největší slávy přepravovala až 75% všech cestujících. Všechn tento vývoj měl i zápornou stránku cena letenek byla pro běžnou populaci neúnosná a proto častěji lidé využívali nepoměrně levnější vlakovou dopravu. Většinou těchto cestujících let slál na prahu další světové války, která měla otevřít dveře k novým možnostem.
1.3. Proměna dopravního letectví po druhé světové válce

Druhá světová válka proměnila obraz letecké dopravy k nepoznání, přinesla nová letadla i možnosti pro další vývoj komerční dopravy. Po válce definitivně skočilo období hydroplánů a těžiště letecké dopravy se definitivně přesunulo ke klasickým letadlům. V zdevastované Evropě začíná výstavba nových moderních letišť, které umožňují starty a přistání většiny používaných letadel. Stejně jak po první světové válce mezery v dopravním letectví doplňují vysloužilé letadla např. Lancastrians, Yorks and C-47s (vojenská verze Douglas DC-3) atd. V druhé polovině čtyřicátých přichází nové modely dopravních letadel pro příklad - Douglas DC-6A s kapacitou 82 pasažérů a cestovní rychlostí letu 434,5 km/h, dále jedno z nejpoužívanějších letadel historie Douglas DC-6b s možností až dopravy až 102 cestujících. Kabiny pro cestující u těchto letadel byly vybaveny standardním komfortem pro cestující zahrnující i této době už běžný palubní personál. Výjimkou je Boeing B377 Stratocruiser s kapacitou od 55 do 101 cestujících s cestovní rychlostí 296 km/h, které poskytuje extremní komfort pro cestující zahrnující dekorace kabin, spací oddělení a šatny.

Většina nových letadel je používána na zajištění kontinentální dopravy. Ani pole transatlantické dopravy nezaostává vzniká například pravidelná trasa Londýn – New York. Běžná dopravní letadla této doby disponují doletem od 4000 km do 7 500 km, vzhledem k tomuto faktu v této době je možné uskutečnit pěstý let s Evropy do Severní Ameriky. Rapinka změna rychlosti letadel nastává s příchodem turbovrtulových letonu. Tuto skupinu zastupují pro příklad Bristol Britannia 100 series s kapacitou až 90 cestujících, Lockheed L-188 Electra s kapacitou 85 pasažérů a cestovní rychlostí 600 km/h jehož poslední skončil až roku 2000. Všechny tyto typy letadel jsou v krátké době zastíněny příchodem proudových letadel. Dopravní letectví tímto okamžikem přechází do epochy jménem „Jet-Age“.

1.4. Příchod proudových letadel

(zdroj vis. [1])

2. Technické požadavky na kabiny dopravních letadel

2.1. Požadavky stanové normou FAR/CS(JAR) 25

2.1.1. FAR/CS 25

Při navrhování kabiny dopravních letadel je třeba v první řadě splnit technické požadavky stanovené normou FAR/CS. FAR/CS stanovuje hlavní požadavky na parametry a vybavení Kabiny pro cestující dopravních letadel - 9 -

Vysoké učení technické v Brně – Fakulta strojního inženýrství
Letecký ústav
kabin dopravních letadel. V této kapitole je uveden pouze přehled základních požadavků na vybavení.

2.1.2. Nouzové východy

Norma FAR/CS § 25.807 definuje základní druhy únikových východů takto:

- **Typ I**: Východ v úrovni podlahy pravoúhlým otevíráním a výškou od 0,609 m do 1,220 m se zabolením rohu maximálně 0,203 m. (Obvykle 0,61 x 1,22 m)
- **Typ II**: Nouzový východ s pravoúhlým otevíráním, výškou 0,508 - 1,118 m a maximálním zaoblením rohů 0,178 m. Tento východ musí být umístěn na úrovni podlahy a nad křídlem letounu, tak aby bylo možné vystoupit z letounu minimálně o 0,254 m a sestoupit maximálně o 0,432 m. (Obvykle 0,51 x 1,12 m)
- **Typ III**: Nouzový východ s pravoúhlým otevíráním, výškou 0,483 - 0,914 m a maximálním zaoblením rohů 0,16 m. Vzdálenost od opuštění letadla nesmí být větší jak 0,762 m do 1,219 m a maximální zaoblením rohů 0,152 m. (0,48 x 0,7 m)
- **Typ IV**: Nouzový východ s pravoúhlým otevíráním, výškou od 1,067 do 1,829 m a maximálním zaoblením rohů 0,178 m.
- **Typ A**: Nouzový východ s pravoúhlým otevíráním dveří, výškou od 0,813 m do 1,829 m a maximálním zaoblením rohů 0,152 m.
- **Typ B**: Nouzový východ s pravoúhlým otevíráním dveří, výškou od 0,762 m do 1,219 m a maximální zaoblením rohů 0,152 m.

Každý z uvedených typů nouzových východů je uzpůsoben evakuaci přesně daného počtu osob tab.2.1.

<table>
<thead>
<tr>
<th>Druh</th>
<th>Počet osob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ A</td>
<td>110</td>
</tr>
<tr>
<td>Typ B</td>
<td>75</td>
</tr>
<tr>
<td>Typ C</td>
<td>55</td>
</tr>
<tr>
<td>Typ I</td>
<td>45</td>
</tr>
<tr>
<td>Typ II</td>
<td>40</td>
</tr>
<tr>
<td>Typ III</td>
<td>35</td>
</tr>
<tr>
<td>Typ IV</td>
<td>9</td>
</tr>
</tbody>
</table>

Tab.2.1. Počet evakuovaných osob (zdroj: [2])

Rozmístění nouzových východů je navrženo tak aby všechny úniky byly snadno dostupné pro pasažéry v daných sekcích a zároveň poskytovali možnost bezpečné evakuace maximálního počtu cestujících v co nejkratší době. Tyto potřeby zajistí rovnoměrné symetrické rozmístění.
východů po délce kabiny letounu. Každý dopravní letoun musí poskytovat dostupnost více než jednoho únikového východu na každé straně letadla pro všechny pasažéry.

Počet únikových východů v závislosti na počtu cestujících na každé straně:

<table>
<thead>
<tr>
<th>Počet cestujících</th>
<th>Únikové východy, komentář</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td>jeden typu IV</td>
</tr>
<tr>
<td>10-19</td>
<td>jeden typu III</td>
</tr>
<tr>
<td>20-40</td>
<td>jeden typu II a jeden typu III</td>
</tr>
<tr>
<td>41-110</td>
<td>jeden typu I a jeden typu II</td>
</tr>
<tr>
<td>110 a více</td>
<td>dva typu I</td>
</tr>
</tbody>
</table>

Tab.2.2. Použití nouzových východů (zdroj: [2])

Doplňující požadavky:
Při kombinaci více druhů nouzových východů, případá maximálně 70 cestujících na typ III. V případě použití nouzových východů typu A,B,C musí být použito minimálně dvou typu II nebo většího na každé straně. Další nezbytně nutné požadavky na počet a rozmístění nouzových východů jsou uvedeny v FAR/CS § 25.807.

2.1.3. Nouzová evakuace

Pro všechny letadla s kapacitou větší než 44 cestujících musí prokázáno že při plném obsazení letadla proběhne komplexní evakuace cestujících a personálu nejdele od 90 sekund od nouzového přistání. Únikové cesty musí být navrženy tak aby byl možný pohyb poraněných lidí s asistencí. Použití těchto cest není závislé na jakémkoli elektronickém zařízení.

Nouzové cesty a východy jsou navrhovány tak aby se minimalizovala možnost jejich zablokování v důsledku strukturního, mechanického selhání nebo ohně. Nouzové cesty musí být světelně označeny a musí být zajištěno osvětlení i při selhání rozvodu elektrické energie.

Nouzové osvětlení musí zahrnovat poziční značky, únikovou cestu na podlaze, vnitřní a vnější osvětlení. U palub umístěných pod hlavní palubou, které jsou používány pouze během letu je nutné zajistit minimálně dvě únikové cesty Kompletní požadavky jsou uvedeny v FAR/CS § 25.8.

2.1.4. Vstupy

Kabiny pro cestující dopravních letadel

- 11 -
Kabiny pro cestující dopravních letadel

- 12 -

1.5. Sedadla, bezpečnostní pásky, pohodlí

Podrobné informace jsou uvedeny v normě FAR/CS § 25.785.
Každé sedadlo ve všech částech letadla musí být projektováno tak aby mohlo být použito při startech, přistáních, během letu i nouzového přistání a nedošlo k vážnému poranění cestujících. Sedadla a jejich ukotvení nesmí být poškozována při zatížení pod přípustným hodnotami.

Přípustné zatížení:

- na horu (upward) 3.0g
- dopředu (forward) 9.0g
- ze stran (sideward) 4.0g
- dolů (downward) 6.0g
- ze zadu (rearward) 1.5g

Všechna sedadla a zařízení musí být testována kompletními dynamickými testy, které jsou prováděny při simulovaných podmínkách nouzového přistávání. Každý pasažér musí být chráněn proti vážnému poranění při všech podmínkách pod přípustnými hodnotami. Při kontaktu hlavy se sedačkou nesmí dojít p ři kontaktu se sedadlem, preventivní ochrana musí být zajištěna při působení axiálního zatížení 1134 kilogramů na každou stehenní kost.

Sedadla v základní poloze 18° k vertikální ose letadla musí být zabezpečena poranění bezpečnostními pásy a podpěrami hlavy, které absorbují energii a chrání páteř, ramena, ruce a hlavu pasažéra. Zároveň je kabina preventivně vybavena zaoblenými rohy proti případnému poranění cestujících. Veškeré vybavení a jeho ukotvení musí být dimenzováno na váhu 77 kilogramů jednoho cestujícího, při působení maximálních dovolených setrvačných sil a reakcí mezi pasažérem, sedadlem, bezpečnostními pásy a kotvením sedadel během letu i pohybu na zemi. Pro zajištění maximální možné bezpečnosti je hodnota setrvačných sil působících na konstrukci vynásobena bezpečnostním faktorem 1,33.
(zdroj vis: [2])
2.2. Konstrukční doporučení

2.2.1. Trup

Trup letounu je navrhován přímo pro svůj účel čímž je doprava cestujících, paliva, nákladu atd. Úvahy o trupu jsou nejčastěji zařazovány při počátečních rozborech konceptu. Vnější tvary a rozměry letadel by měli být navrhovány jako kompromis mezi požadavky na efektivnost, komfort a bezpečnost letu atd. Tvar nosné konstrukce letounu je navrhován pro dosažení minimálních vnějších rozměrů při zachování vnitřních prostorů pro cestující s daným komfortem a bezpečností. Délka trupu a plocha průřezu se určuje na základě požadovaného vnitřního objemu pro umístění posádky, palubního personálu, cestujících atd. Volba trupu je dále ovlivněna celou řadou jiných faktorů.

Obr.2.1. Šířka kabiny (zdroj: vis[3])

U dopravních letounů je průměr trupu D_{tr}, šířka trupu B_{tr} a délka trupu L_{tr} přímo dán počtem cestujících. Speciálně šířka trupu je ovlivněna počtem cestujících umístěných vedle sebe v jednotlivých blocích sedadel a komfortem každého z nich. Pro konstruktéra je komfort dán prostorem připadající na jednoho pasažéra. Na základě toho je možné šířku a délku kabiny cestujících odvodit obr.2.2.1 obr.2.2.

Obr.2.2. Délka kabiny (zdroj:[3])
2.2.2. Sedačky

Teoreticky je komfort cestujících v letecké dopravě rozdělen do tří základních tříd:
I.třída - maximální komfort cestujících
II.třída - obchodní třída „business class“
III.třída - turistická třída

V praxi dopravního letectví je rozdělení do jednotlivých tříd dle komfortu cestujících závislé na daných leteckých společností. Při další úvaze nad rozměry kabiny je nutné brát úvahu sedačky pro cestující. Základní rozměry a polohy jsou zobrazeny na tab. a obr.2.3.

Obr.2.3. Rozměry sedaček (zdroj: [3])

<table>
<thead>
<tr>
<th>Označení</th>
<th>Rozměr</th>
<th>I.třída</th>
<th>II.třída</th>
<th>III.třída</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>cm</td>
<td>50 (47-53)</td>
<td>43,5 (52,5-46)</td>
<td>42 (40,5-43,5)</td>
</tr>
<tr>
<td>b₂</td>
<td>cm</td>
<td>120 (117-123)</td>
<td>102 (100-105)</td>
<td>99 (47-102)</td>
</tr>
<tr>
<td>b₃</td>
<td>cm</td>
<td>-</td>
<td>152 (150-160)</td>
<td>145</td>
</tr>
<tr>
<td>l</td>
<td>cm</td>
<td>7</td>
<td>5,5</td>
<td>5</td>
</tr>
<tr>
<td>h</td>
<td>cm</td>
<td>107 (104-112)</td>
<td>107 (104-112)</td>
<td>99 (92-104)</td>
</tr>
<tr>
<td>k</td>
<td>cm</td>
<td>43</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>m</td>
<td>cm</td>
<td>20</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>n</td>
<td>cm</td>
<td>Obvykle 81 (61-86)</td>
<td>Obvykle 81 (61-86)</td>
<td>Obvykle 81 (61-86)</td>
</tr>
<tr>
<td>p / pₘₐₓ</td>
<td>cm</td>
<td>71/102</td>
<td>69/95</td>
<td>66/90</td>
</tr>
<tr>
<td>α / αₘₐₓ</td>
<td>[°]</td>
<td>14/45</td>
<td>15/38</td>
<td>15/38</td>
</tr>
</tbody>
</table>

Tab.2.2.Rozměry sedaček (zdroj: [3])

Dále je nutné brát v potaz uspořádání sedaček v kabině. Při použití více bloků sedaček v jedné řadě, je nutné zajistit dostatečně velký průchod:
- ne menší jak 500 mm u I.třídy
- 450 – 500 mm u II.třídy
- 390 – 400 mm u III.třídy

Při podělném rozmisťování sedaček v kabině je nutné přibližně dodržovat následná doporučení:
- a) vzdálenost mezi řadami sedaček by měla být
Vysoké učení technické v Brně – Fakulta strojního inženýrství
Letecký ústav

u I.třídy 960 – 1080 mm
u II.třídy 540 – 870 mm
u III.třídy 750 – 810 mm

b) první řada nesmí být umístěna blíže, jak ve vzdálenosti 1200 – 1300 mm od přední stěny kabiny, měřeno od vrcholu zádové opěrky v normální poloze (sklon 15°)

c) u poslední řady z důvodu odklonu zádové opěrky o maximální úhel dozadu, nesmí být vzdálenost, měřena z téhož místa sedačky menší jak 235 – 250 mm u I.třídy a 35 – 50 mm u III.třídy.

Obr. 2.4. Položka sedaček vůči stěnám a přepážkám kabiny (zdroj: [3])

Na konec se hlavní rozměry kabiny se kontrolují teoretickým měrným objemem kabiny cestujících
(objem připadající na jednoho pasažéra).

Kontrolní hodnoty:
I.třída 1,5 1,8m³/cestující
II.třída 1,2 1,3m³/cestující
III. třída 0,9 1,0m³/cestující

Logicky je třeba větší hodnotu brát pro letouny s větším doletem a naopak. Do těchto objemů se nezapočítává objem pomocných prostorů. Výška kabiny pro cestující v místě průchodu by neměla být menší než 1900 – 2000 mm.

2.2.3. Ochrana posádky a cestujících proti působení výšek

Člověk je evolucí vybaven pro pobyt na povrchu země. Při pobytu na palubě letadla během letu ve velkých výškách se organismus musí přizpůsobit nezvyklým podmínkám jako jsou nízký atmosférický tlak, teplota a nedostatek kyslíku. Tyto podmínky vyvolávají celou řadu nežádoucích fyziologických jevů (výšková nemoc, aeroembolismus, bolesti dutin, atd.). Ochrana cestujících a posádky letadel zajišťuje hlavně přetlaková kabina a v nouzových situacích kyslíková soustava.

Přetlaková kabina

Výšková kabina s příslušným zařízením slouží k zajištění normálních životních podmínek na palubě. Pojmem normální životní podmínky rozumíme řadu podmínek jako například: množství CO₂, které nesmí překročit hranici 0,12%, tlak vzdachu nesmí být nižší než 74 kPa a teplota se reguluje v rozmezí 16-26°C, atd. V souvislosti s těmito požadavky se zařízení výškové kabiny dělí na dvě základní soustavy. Jedna reguluje tlak, druhá teplotu a vlhkost společně s čistotou vzduchu. Dohromady vytvářejí klimatizační výškovou soustavu.
Regulace tlaku

Tlak v kabině je v každém okamžiku upravován automatickým regulátorem. Tlak není po celou dobu stejný, ale je přímo závislý na výšce letu. Při letu do výšky 2,5 km je tlak v kabině shodný s atmosférickým. Od dané výšky H (přibližně 4km) se udržuje konstantní přetlak. Při dalším nárůstu výšky se tlak upravuje tak, aby rozdíl tlaku kabiny odrážel neustále konstantní s atmosférickým tlakem. S konstrukčního hlediska je důležité dobře izolovaná kabina a zabezpečena ventilace proti překročení bezpečného přetlaku. Kabinová výška je připočtená hodnota tlaku v kabině na atmosférický tlak určitá výška. V tab.2.3. jsou uvedeny příklady rozsahu výšek a udržovaných přetlaku.

<table>
<thead>
<tr>
<th>Letadlo</th>
<th>Rozsah výšek s konstantním tlakem (m)</th>
<th>Udržovaný přetlak (kPa)</th>
<th>Skutečná výška (m)</th>
<th>Kabinová výška (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-62</td>
<td>0 - 7340</td>
<td>63</td>
<td>11000</td>
<td>1 475</td>
</tr>
<tr>
<td>JAK-40</td>
<td>0 – 2800</td>
<td>30</td>
<td>6000</td>
<td>2300</td>
</tr>
</tbody>
</table>

Tab.2.3. Příklady rozsahu výšek a udržovaných přetlaku (zdroj: [5])

2.2.4. Vstupní dveře

Standardně jsou u dopravních letadel použity vstupní a nákladní dveře, nouzové východy a dveře mezi sekcemi. Vstupní dveře pro cestující se často umisťují na levé straně trupu pro snadný přístup na letišti. Dle FAR/CS 25 tyto dveře musí minimálně odpovídat nouzovému výchozu typu II, nejlépe typu II. Dveře jsou konstruovány tak, aby je bylo možné jednoduše otevřít ze vnitřního i vnějšího prostoru. Nutná je i vizuální kontrola uzamčení kabiny pilota pomocí viditelných háků či čepů. Existují nejrůznější způsoby otevírání dveří například vyklopení do boku, vsunutí do připraveného otvoru a u menších strojů jsou dveří nainstalovány schůdky pro nástup cestujících.

2.2.5. Nouzové východy

2.2.6. Nouzová opatření

Kyslíková soustava

Nezbytně nutné jsou kyslíkové masky, které jsou připojené na rozvod kyslíku. Pro všechny cestující a personál v maximální možné blízkosti. Počet masek by měl být minimálně o 10% větší než celkový počet sedadel. Letadla s výškou let větší než 4,5 km jsou vybavena automatickým spuštěním masky ze skříňek nad sedaly. Všem cestujícím musí masky poskytovat nepřetržitou dodávku po dobu 15 minut. Dodávka kyslíku je přímo závislá na výšce, ve výškách pod 5,5 km je parcíální tlak kyslíku roven 13 kPa a nad 5,5 km je parcíální tlak 11 kPa. Zapnutí přívodu je zajištěno třemi způsoby – automatickým barometrem, elektronicky z pilotní kabiny posádky a mechanicky personálem.

Obr. 2.6 Maska cestujícího (zdroj:[5])

Nouzové vybavení kabiny

(zdroje: [3], [4], [5])

2.3. Cílové skupiny cestujících

Dnešní společnost není z hlediska letecké dopravy homogenní, ale je složena s více druhů cestujících se specifickými požadavky. Pro jednoznačnost a jednoduchost nazveme tyto druhy cílové skupiny cestujících.

Základní skupinu cestujících tvoří lidé, kteří cestují s požadavkem minimálních nákladů, jejich požadavky na komfort pohodlí a servis během letu jsou omezeny. Pravděpodobně tato skupina tvoří největší procento cestujících letecké dopravy. Vzhledem k tomu se nevětší prostor na palubách vyhrazen pro cestující turistické třídy. Konkurenční prostředí trhu leteckých aerolinií významně navýšuje komfort pro cestující těchto tříd. I v budoucnosti je pravděpodobně pokračování tohoto trendu.

Druhou skupinu cestujících tvoří lidé, kteří používají leteckou dopravu k pracovním účelům. Lety této skupiny lidí nejčastěji placeny jejich zaměstnavateli, kteří kromě určitého komfortu také požadují minimální rychlost dopravy s využitím i kombinace více letů. Pro tuto skupinu cestujících je vyhrazena na palubách „business class“. Do budoucnosti je pravděpodobná stagnace počtu cestujících této skupiny cestujících.
Nejméně početnou skupinou cestujících je skupina cestujících s požadavkem vysokého až maximálního luxusu. Pro tyto cestující je nabídka aerolinií široká zahrnující třídu „first class“, samostatné kajuty a pracovny pro cestující, maximální luxus a pohodlí zajišťují soukromá či firemní letouny zvané „Business jet“. Budoucí vývoj této kategorie je čistě závislý na požadavcích cestujících, vzhledem k její obrovské kupní síle. Populace je co se týče letecké dopravy rozdělena do více skupin jak bylo popsáno výše, každá letecká společnost se nutně musí vyprofilovat a zaměřit se na výhodnou skupinu či skupiny cestujících. Pří znalosti požadavků trhu je nutné působit celkový poskytovaný servis před a během letu a podle toho přizpůsobit i kabiny dopravních letadel.

2.4. Psychologie cestujících

Dlouhodobý pobyt cestujících na palubách dopravních letadel vyvolává celou řadu nežádoucích zdravotních problémů. Většině těchto problémů se snadno předchází technickými opatřenímí. Výjimečným a těžko řešitelným problémem je psychický stav cestujících během letu. Posádka a palubní personál jsou předem připraveny na zvládnutí stresu během letu. Cestující tuto přípravu nedostávají. Proto panuje snaha o maximální možné snížení stresových faktorů.

Pobyt ve stísněných prostorech vyvolává celou řadu různých úzkostí. Nejznámější problém se sice přímo nevztahuje k samotnému letu nicméně se často vyskytuje u cestujících. Tímto problémem je klaustrofobie. Jenadou z možností předcházení tomuto problému je vybavení kabiny okny a osvětlením atd. Další častým problémem je takzvaný tunelový efekt většina cestujících by jen těžko snášela dlouhý tunelový prostor kabiny. Tomuto problému se předchází rozdělením letadla do jednotlivých sekcí a rozptýlením (video, hudba, časopisy atd.) během letu. Existuje celá řada dalších problémů spojených letem cestujících, které jsou otázkou nejen pro konstruktéry letadel ale hlavně pro psychology.

U velkých dopravních letadel určených pro dálkové lety je nutné redukovat pocity úzkosti větším prostory pro pohyb v letadle. Tímto způsobem se také odstraní i zdravotní problém dlouhodobého sezení. Důležitost tohoto aspektu je významná proto je třeba s ním počítat při návrhu kabin dopravních letadel.

3. Kabiny vybraných dopravních letadel

Kapitola je logický krok vpřed při studii vývoje kabin pro cestující dopravních letadel. Následující část je přechodem od historie, teoretických požadavků a norem k praktickému řešení jednotlivých výrobků. Pro stručnost jsou letouny rozděleny do tří základních kategorií letadel rozdělených dle vzdálenosti jejich běžných letů. Rozdělení: Krátké (regionální) lety, Středně dlouhé (kontinentální) lety a dlouhé (mezikontinentální) lety.

Pozn. V každé kategorii jsou popsány letouny zastupující určitou specifický návrh.
3.1. Kabiny letadel pro krátké(regionální) lety

3.1.1. ATR 72

ATR 72 je turbovrtulový letoun určený pro regionální lety s kapacitou od 60 do 75 cestujících a doletem 2 600 km. Vývoj byl oficiálně zahájen roku 1986, první let se uskutečnil o dva roky později roku 1988. ATR 72 je následníkem dodnes používaného staršího modelu ATR 42.

A) Rozměry kabiny

Kabina pro cestující je upořádána pro jednu třídu s konfigurací 2x2 (dvě sedadla na každé straně). Šířka sedačky pro každého cestujícího je 0,44 m, šířka uličky je 0,457m. Na první pohled není kabina z hlediska rozměrů komfortní. V úvahu je třeba brát že letoun je učen pro krátkou dobu regionálních letů.

![Obr.3.1. ATR-72-500 rozměry kabiny (zdroj:[6])](image)

B) Uspořádání paluby

Prostor palby je rozdělen do 18 řad po 4 sedadlech, celková kapacita je 74 cestujících. Jediný vstup pro cestující je na zádi letounu s rozměry 0,75 m x 1,75 m. Letoun disponuje dalšími dvěmi dveřmi nákladní na přídi a servisní (pro personál) na zádi. Nouzové opuštění letadla je
zápružné východy typu III viz obr.3.2.1-2. Prostory pro personál (kuchyňka) jsou na zádi i na přídí. Letoun je vybaven jedinou toaletou na zádi.

\[\text{Obr.3.2. Paluba ATR-72-500 (zdroj:[6])} \]

\[\text{Obr.3.3. Paluba ATR 72 (www.airliners.net)} \]

C) Zhodnocení

\[\text{Obr.3.4. ATR-72 (www.airliners.net)} \]

Díky levnému provozu a přiměřené velké kapacitě. ATR 72 slouží od 80.let 20.století jako jeden ze základů regionální dopravy. Během let byla vytvořena celá řada typů tohoto letounu:

\[\text{ATR 72 -200, ATR-210, ATR–500 a ATR -600. Do roku 2001 bylo vyrobeno a dodáno 323 letounů tohoto typu. Řazení cestujících pouze do jedné třídy v konfiguraci 2x2 je minimálně dostačující pro potřebu regionálního dopravy. (zdroj vis. [6])} \]

3.1.2. Saab 2000

A) Rozměry kabiny

Kapacita letadla je 50 cestujících v jedné třídě. Sedadla v prostoru pro cestující jsou řazena v bloku dvou vedle sebe a třetí je odděleno uličkou. Šířka každého sedadla ve dvojici je 0,46 m, samostatné sedadlo je 0,47 m široké. Rozměry sedadel jsou standardní a poskytují přijatelné pohodlí při kratších letech.

Obr.3.5. Průřez kabinou Saab2000 (zdroj:[7])

B) Uspořádaní paluby

Obr.3.6. Paluba Saab2000 (zdroj:[7])
C) Zhodnocení

(zdroj vis. [7])

3.1.3. Embraer 120 Brasilia

A) Rozměry kabiny

Kapacita kabiny je 30 cestujících a dvoučlenný palubní personál, letoun je provozován v několika verzích. Uspořádání kabiny je realizováno dvěma sedadly v bloku a jedním přes uličku. Rozměry sedel jsou standardní vyhovující pouze pro krátké regionální lety. Šířka uličky je 0,42 m, což relativně malý prostor pro pohyb cestujících a personálu. Zobrazení kabiny na obr. 3.9.
B) Uspořádání paluby

C) Vnější rozměry vstupů letounu

Pro kompletní ilustraci kabiny pro cestující Emb120 je potřebná znalost vnějšího rozmístění vchodů a jejich rozměry.
D) Zhodnocení

Emb120 Brasilia populární verze regionálního letounu s kapacitou 30 pasažérů a maximální dopravní rychlostí 555 km/h. Oproti výše posuzovaným letadlům je Emb 120 je pomalejší a má menší kapacitu. Ale v případě regionální dopravy není kapacita rozhodujícím kritériem a vyšší rychlost není na krátkých vzdálenostech tolik patrná. Hlavním kritériem regionální dopravy jsou nízké náklady na provoz a efektivita jednotlivých spojení. Celkem bylo zavedeno do provozu 350 letadel toho typu. Tímto faktem překonává dříve posuzované modely regionálních dopravních letadel. (zdroj vis. [8])

3.1.4 Srovnání vybraných letadel pro regionální lety

<table>
<thead>
<tr>
<th>Letadlo</th>
<th>kapacita</th>
<th>dolet (km)</th>
<th>počet dodaných kusů*</th>
<th>cestovní rychlost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR 72</td>
<td>74</td>
<td>1,650</td>
<td>323</td>
<td>511 km/h</td>
</tr>
<tr>
<td>Saab2000</td>
<td>50</td>
<td>2,868</td>
<td>64</td>
<td>682 km/h</td>
</tr>
<tr>
<td>Emb120</td>
<td>30</td>
<td>1,428</td>
<td>350</td>
<td>555 km/h</td>
</tr>
</tbody>
</table>

* hodnota uvádí počet dodaných letadel všech verzí

Čistě z technického hlediska ze srovnání vychází nejlépe Saab2000. S nejvyšší cestovní rychlostí a doletem. Při komplexnějším srovnání je patrné že technické hledisko je pouze...
jedním z mnoha. ATR 72 disponuje největší kapacitou, s větší kapacitou jsou spojené větší rozměry letadla i větší rozměry připadající na jednoho pasažéra. Naopak Emb120 je letadlem s nejmenší kapacitou, přes tento fakt je ekonomiky nejúspěšnějším s 350 prodanými kusy. Snaha o ideální poměr kapacity pohodlí cestujících a nákladů vytváří nejúspěšnější modely. Nejméně úspěšným model z představených je Saab200 pouze s 64 prodanými kusy, i přes podstatně větší rychlost letu. Jeden z důvodů neúspěchu Saabu2000 je špatný poměr doletem kapacitou a náklady na provoz. Z hlediska pohodlí jednotlivých cestujících jsou jednotlivé stroje prakticky vyrovnané. Nicméně při krátké době regionálních letů je toto hledisko méně podstatné.

3.3. Závěr

3.2. Letadla pro středně dlouhé(kontinentální) lety

V této části přikročíme k definici a popisu dopravních letadel určených pro středně dlouhé (kontinentální) lety. U těchto strojů jsou zvýšené požadavky na komfort a pohodlí cestujících na rozdíl do regionálních letounů. Větší vzdálenosti logicky znamenají delší dobu a delší čas znamená zvýšené nároky cestujících nejen na pohodlí ale i rozptýlení a servis během letu samotného. Pro definici středně dlouhých letů položíme za hranici linkový let Londýn (Heathrow) – Moskva (Domodedovo) s přibližnou dobou letu 3h 55min. Opět lze vybrat typické letouny používané pro středně dlouhé lety: Airbus A320 využívaný např. společností British Airways, Boeing B737-800 používaný např. United Airlines a McDonnell Douglas MD90 používaný Delta Airlines.

3.2.1. Airbus A320

A) Rozměry kabiny

Kabina pro cestující disponuje prostorem pro 150 až 179 cestujících. Sedačky jsou v blocích po třech na každé straně po délce letounu. Výška stropu nad sedadly je výšce 1,5 m, výška
opěrek zad je 0,51 m. Pohodlí každého cestujícího je standardní bez výraznějších pozitiv. Komfort na palubě je navržen pro delší lety a nechybí různé formy rozptýlení cestujících (video, hudba atd.). Průřez kabiny je zobrazen na obr.3.14.

![Obr.3.14. Průřez A320 (zdroj:[9])](image)

B) Uspořádání kabiny

![Obr.3.15. Kabina A320 (zdroj:[9])](image)

Cestující na palubě jsou rozmístěny do jednotlivých řad po šesti sedadlech v jedné řadě rozmístěných v blocích po třech na každé straně. Dva vstupy pro cestující jsou na předním částečně a dva vstupy jsou umístěny na zadní letadla. Tyto vstupy těžké slouží i jako nouzové východy, další čtyři nouzové východy jsou umístěny po dvou
na každé straně nad křídly. Sedadla vyhrazená pro palubní personál jsou rozmístěna po dvou na přídí letounu a dvou na zádi. Vzhledem k většímu počtu cestujících jsou na palubě umístěny dvě kuchyně, jedna na přídí a druhá na zádi. Taktéž toalety jsou rozmístěny po jedné na přídí a zádi. Prostor vyhrazený pro příruční zavazadla a oblečení cestujících je umístěn nad všemi sedadly cestujících. Na obr.3.21. jsou zobrazeny umístění a výšky vůči povrchu vstupních a nouzových, servisních dveří plus základní rozměry letadla.

![Obr.3.16. Vnější rozměry A320 (zdroj:[9])](image)

![Obr.3.17. Paluba A320 (www.airbusworld.com)](image)

C) Zhodnocení

Hlavním cílem při navrhování A320 byla konkurence schopnost letounům společností Boeing a McDonnell Douglas na letech na střední vzdálenosti. S kapacitou až 179 cestujících a cestovním rychlostí 845km/h byl tento cíl skutečně splněn.

![Obr.3.18. A320 (www.airliners.net)](image)

Kabiny pro cestující dopravních letadel
Druhá verze A320-200 skutečně dosáhla velkého komerčního úspěchu, když bylo během let prodáno dva tisíce kusů. (zdroj vis. [9])

3.2.2. McDonnell Douglas MD90

MD 90 je přepracovanou verzí staršího modelu MD 80, jehož první let proběhl roku 1993. Do běžného provozu byl zařazen v roce 1995, postupem času bylo vyvinuto několik verzí tohoto stroje MD90-30, MD90-30E a MD90-50. MD 90 je dnes běžně používán na příklad společností Delta Air Lines, Japan Air System atd..

A) Rozměry kabiny

Konfigurace sedadel u turistické třídy je 2x3 (dvě sedačky vlevo a tři vpravo). Šířka jednoho sedadla turistické třídy 0,455m, šířka uličky mezi bloky sedaček je 0,483m. Prostory v turistické třídě je trochu nadstandardní a poskytují zvýšené pohodlí. První třída je v konfiguraci dvou sedaček na každé straně. Šířka každého sedadla 0,567m což poskytuje nadprůměrný prostor po každého cestujícího a šířka mezi bloky sedaček je 0,483m. Každé sedalo je vybaveno regulací klimatizace, úložnými prostory nad sedaly a ovladači multimediálních zařízení se sluchátky pro poslech hudby. Obr.3.19a. Kabina turistické třídy (zdroj:[10])

Obr.3.19b. Průřez kabiny MD90 první třída (zdroj:[10])
B) Uspořádání kabiny

Kapacita kabiny pro cestující MD 90 je 153 cestujících při rozdělení paluby do dvou tříd a 173 cestujících jen v turistické třídě. Při dalším popisu lze použít MD90-30. Cestující na palubě v turistické třídě jsou rozděleni v 26 řadách po pěti pasažérech plus sedm řad na zádi letounu, v první třídě je umístěna na přídí a skládá se tři řad po čtyřech cestujících. Přední vstupní dveře pro cestující jsou umístěny na přídí a zádi v ocasní části letadla. Servisní dveře jsou jedny na přídí a druhé v zadní části paluby. Čtyři nouzové východy typu III jsou standardně nad křídly letounu po obou stranách. Pomocné prostory jsou na přídí letadla a v servisní prostory (kuchyně, sklady a toalety) na zádi. Zobrazení paluby uvedeno v obr.3.20.

Obr. 3.20. Sestavení paluby MD90-30 (zdroj:[10])

Obr.3.21. Poloha a výšky vstupů MD90 (zdroj:[10])
C) Speciální vstup

Specialitou MD90 je jeden z hlavních vstupů dveřmi na spodním povrchu letounu v zadní části letadla vis obr.3.23. Při nástupu a výstupu cestujících se odklopu zadní spodní část. Na oklopné části je realizované schodiště pro nástup cestujících. Nástupy toho typu jsou často využívány u vojenských a nákladních letounů. U dopravních letounů se vstupy toho typu se dnes již nepoužívají vzhledem k faktu, že většina letišť je vybavena tunely pro nástup pasažérů přímo z budovy letiště.

D) Zhodnocení

Koncept MD90 byl již od počátku navrhován středně dlouhé lety. S kapacitou 153 cestujících rozdělených do dvou tříd.
3.2.3. Boeing B737

A) Rozměry kabiny

Kapacita cestujících B737 je různá pro každou ze jeho verzí. Nejmenší kapacitou disponovala první verze B737-100 (100 cestujících) a největší kapacitou disponuje jedna s posledních verzí B737-900 (215 cestujících). Popisovaná verze B737-800 má kapacitu až 189 cestujících. Pro pasažéry první třídy jsou připravena sedadla s šířkou 0,58m, přičemž šířka uličky mezi bloky sedaček je 0,51m. V turistické třídě sedadla mají šířku 0,43m a šířka uličky je stejná jako u turistické třídy. Prostor pro cestující první třídy je adekvátní k jejich požadavkům a umožňuje pohodlný let. Turistická třída je vybavena pouze minimálním standardem pro cestující.

Obr.3.25. Rozměry kabiny B737-800 a) první třída b)turistická třída (zdroj:[11])

Prostor pro cestující první třídy je adekvátní k jejich požadavkům a umožňuje pohodlný let. Turistická třída je vybavena pouze minimálním standardem pro cestující.
B) Uspořádání kabiny

![Obr.3.26. Rozložení cestujících na palubě B737-800 (zdroj:[11])](image)

![Obr.3.27. Rozmístění a rozměry vstupních dveří B737-800 (zdroj:[11])](chart)

Rozmístění a pozice vstupních dveří, nouzových východů, servisních poklopu a dveří je zobrazeno na obr.3.30. Pro dokreslení pocitů na palubě B737-800 je uveden obr.3.28.

Kabiny pro cestující dopravních letadel
- 32 -

C) Zhodnocení

Obr. 3.28. Paluba B737 (zdroj: [11])

Obr. 3.29. B737-800 (www.airliners.net)

3.2.4. Srovnání letadel pro kontinentální lety

<table>
<thead>
<tr>
<th>Letadlo</th>
<th>Kapacita</th>
<th>Dolet (km)</th>
<th>Počet prodaných kusů *</th>
<th>Cestovní rychlost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A320-200</td>
<td>150</td>
<td>5,700</td>
<td>1898</td>
<td>0.78 Mach</td>
</tr>
<tr>
<td>MD90-30</td>
<td>153</td>
<td>3,860</td>
<td>116(1191)**</td>
<td>0.76 Mach</td>
</tr>
<tr>
<td>B737-500</td>
<td>123</td>
<td>4,444</td>
<td>5,626</td>
<td>0.74 Mach</td>
</tr>
</tbody>
</table>

Tab. 3.2. Srovnání letadel pro kontinentální lety

* Hodnota uvádí počet dodaných letadel všech verzí
** Číslo závorce hodnotu pro MD80

U středně dlouhého letu je samozřejmě důležitá příměřeně vysoká kapacita, ale také vzrůstající nároky na uspořádání kabiny, pohodlí komfort během letu. Při průměrné délce od 3 do 6h je nezbytně nutný významný nárůst pohodlí cestujících oproti regionální letadlu. Téměř absolutním vládcem kategorie je Boeing 737, který díky dobře navrženému poměru mezi kapacitou, dolem a rychlostí prodal během let 5626 kusů. Dalším úspěšným konceptem je stroj společnosti Airbus A320 s kapacitou 150 cestujících a výrazně největším doletem avšak s stále zaostává za B737. Díky vysoké poptávce po kontinentálních letech zejména v Severní Americe je MD90 a MD80 jeho přímým předchůdce také relativně úspěšným strojem.

Kabiny pro cestující dopravních letadel
- 33 -
3.2.5. Závěr

Hlavním úkolem letecké dopravy na středních vzdálenostech je doprava cestujících mezi vzdálenými velkoměsty. Dopravu z menších letišť na mezinárodní zajišťuje regionální (sběrná) doprava, proto je kontinentální doprava následným krokem k zajištění rychlé přepravy cestujících na libovolné vzdálenosti. Kabiny pro cestující letadel určených pro středně dlouhé lety jsou komfortem, vybavením a servisem zařízeny na dobu letu přibližně do šesti hodin letu. Průměrná kapacita letadla typu je 100-160 cestujících. Cena těchto letů je přímo závislá na poskytovaném komfortu během letu, nejnižší cenu nabízí nízko-nákladové společnosti, které poskytují pouze základní servis během letu. S delší dobou logicky narůstá důležitost uspořádání kabiny pro cestující tak, aby poskytovala maximální možné pohodlí pro cestující všech tříd. Tento fakt by měl být brán při navrhování jednotlivých letadel.

3.3. Letadla pro dálkové (mezikontinentální) lety

3.3.1. Boeing 747

A) Uspořádání kabiny

Enormní kapacita 550 cestujících B747-400 vyžaduje pečlivou studii požadavků jednotlivých cílových skupin cestujících a následné uspořádání kabin dle těchto požadavků. Jednotlivých verzí uspořádání kabin se nachází celá řada, na závislosti na jednotlivých verzí letadla a požadavcích dané aerolinie. Pro studii kabin byla vybrána varianta s 32 cestujícími první, 34 business class a 309 turistické vis obr.3.30.
Obr.3.30. Horní a hlavní paluba B747-400 (zdroj:[12])

![Diagram B747-400](image)

<table>
<thead>
<tr>
<th>MINIMUM</th>
<th>MAXIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT - IN</td>
<td>FT - IN</td>
</tr>
<tr>
<td>FT - IN</td>
<td>FT - IN</td>
</tr>
<tr>
<td>A</td>
<td>31 - 10</td>
</tr>
<tr>
<td>B</td>
<td>24 - 10</td>
</tr>
<tr>
<td>C</td>
<td>15 - 5</td>
</tr>
<tr>
<td>D</td>
<td>8 - 8</td>
</tr>
<tr>
<td>E</td>
<td>6 - 3</td>
</tr>
<tr>
<td>F</td>
<td>8 - 10</td>
</tr>
<tr>
<td>G</td>
<td>9 - 6</td>
</tr>
<tr>
<td>H</td>
<td>26 - 6</td>
</tr>
<tr>
<td>J</td>
<td>13 - 0</td>
</tr>
<tr>
<td>K</td>
<td>60 - 2</td>
</tr>
<tr>
<td>L</td>
<td>27 - 0</td>
</tr>
<tr>
<td>M</td>
<td>17 - 7</td>
</tr>
<tr>
<td>N</td>
<td>6 - 0</td>
</tr>
<tr>
<td>P</td>
<td>3 - 5</td>
</tr>
<tr>
<td>S</td>
<td>15 - 8</td>
</tr>
<tr>
<td>T</td>
<td>15 - 8</td>
</tr>
</tbody>
</table>

Obr.3.33. Rozmístění výšky vstupů a nouzových východů B747 (zdroj:[12])

Úplnou ilustraci paluby B747 opět dotváří vnější pohled na rozmístění vstupů vis obr.3.33.
B) Rozměry kabiny

Pro studii rozměrů kabiny je třeba nejprve určit pozice jednotlivých řezů letounu. Na obr. 3.31. je zobrazena horní paluba s obchodní třídou a hlavní (dole) paluba s první třídou. V první třídě jsou bloky sedadel rozmístěny v třech blocích po dvou. Šířka bloku dvou sedaček je 1,45 m což poskytuje každé osobě přibližně 0,7m, tento prostor poskytuje nadprůměrné pohodlí během dlouhého letu. Šířka uličky na každé straně je 0,86m a měla by poskytovat prostor pro pohodlný pohyb cestujících a personálu. V obchodní třídě na horní palubě jsou dva bloky sedadel pro dvě osoby vedle sebe. Šířka každého bloku 1,45m. I „business class“ poskytuje vysoké komfort. Další část sedadel pro obchodní třídu je na obr. 3.31.

Bloky sedel v této části obchodní třídy rozmístěny tak, že bloky pro dvě osoby jsou na stranách letounu a blok pro tři uprostřed. Šířka bloku pro dva je 1,37m a bloku pro tři osoby je 2,08m. Každé osobě tak případá přibližně 0,6m. Šířka uliček mezi sedadly je 0,63m. Rozmístění sedel pro 309 cestujících turistické třídy je na obr. 3.33.

Bloky sedadel jsou rozmístěny tak, že bloky pro tři cestující jsou umístěny na stranách letounu a blok pro tři cestující uprostřed. Šířka bloku sedel pro tři je 1,59m a bloku pro čtyři cestující je 2,13m což poskytuje každému cestujícímu turistické třídy přibližně 0,5m šířky sedadla. Prostor pro cestující turistické třídy v dané kategorii nadstandardním. Šířka uličky mezi sedadly je 0,53m, tento rozměr stále adekvátní pro pohyb cestujících a personálu.

Obr.3.31. Hlavní paluba první třídy, horní paluba business class B747-400 (zdroj:[12])

Obr.3.32. Business class hlavní paluba B747-400 (zdroj:[12])

Obr.3.33. Turistická třída hlavní paluba B747-400 (zdroj:[12])

Kabiny pro cestující dopravních letadel
- 36 -
Na obr.3.34. je znázorněn prostor pro odpočinek posádky a personálu, tento prostor je umístěn na zádi hlavní paluby. Pro odpočinek jsou připraveny dvě buňky s lůžky a dvě sedadla.

Obr.3.34. Prostor pro odpočinek posádky (zdroj:[12])

![Obr.3.34. Prostor pro odpočinek posádky (zdroj:[12])](image)

a) b)

Obr.3.35. Paluba B747 a) turistická třída b) první třída (zdroj:[12])

C) Zhodnocení

Koncept toho letounu vyvažuje poměr mezi kvantitou cestujících s letovými náklady a komfortem během letu. Kabina pro cestující je rozdělena logicky do oddělených sektorů pro různé třídy cestujících. Rozsáhlé prostory pro personál umožňují široké spektrum služeb pro všechny cestující. Uspořádání kabiny a široké uličky odbourávají velkou část psychologicky nepříjemného prostředí. Nezaměnitelný charakter podoby letounu dotváří horní paluba určená pro „business class“. S cestovní rychlostí 900 km/h a doletem přibližně 12 000 km poskytuje téměř ideální dopravní prostředek pro většinu aerolinií. Pravděpodobně se jedná o prozatím komerčně nejúspěšnější letadlo všech dob.

(zdroj vis. [12])

3.3.2. Airbus A380

A) Uspořádání kabiny

Celkový počet cestujících 555 je rozdělen mezi hlavní a horní palubu přičemž na horní palubě je umístěno 199 cestujících a na hlavní 356 cestujících.

Obr.3.37. Rozdělení horní paluba A380-800 (zdroj:[13])

Obr.3.38. Rozdělení hlavní paluby A380-800 (zdroj:[13])

Pro popis přístupových a nouzových dveří je potřeba použít vnější pohled na obr.3.38. Rozmístění dveří je na obou stranách letadla symetrické. Na horní palubě je připraveno 6 vstupních/nouzových dveří. Hlavní paluba disponuje 8 vstupy a nouzovými východy nad křídly. Výšky vstupů jsou uvedeny v tabulce na obr.3.39.
Vysoké učení technické v Brně – Fakulta strojního inženýrství
Letecký ústav

Kabiny pro cestující dopravních letadel

Obr. 3.39. Vnější rozmístění vstupů A380-800 (zdroj: [13])

Příjemné moderní prostředí vytváří pohodlí pro dlouhé mezikontinentální lety. I přes velký počet cestujících Nepůsobí prostředí stísněně, jak je dnes již standardní jednotlivá sedala jsou vybavena obrazovkami a sluchátky pro sledování filmů a poslech hudby. Tyto drobné detaily pomáhají při rozptylení cestujících během dlouhých letů. Ilustrace obr. 3.39.
Vysoké učení technické v Brně – Fakulta strojního inženýrství
Letecký ústav

Kabiny pro cestující v dopravních letadlách

A) Kabiny pro cestující dopravních letadel

Sektory pro cestující „business class“ na horní palubě jsou sestaveny v blokách po třech vedle sebe tak, že prostory řad jsou posunuty o přibližně půl sedačky dozadu oproti řadám krajním. Jednotlivé bloky sedel jsou široké 1,37m, což každému cestujícímu poskytuje přibližně 0,65m, tento prostor poskytuje vysoké pohodlí i na dálkových letech. Šířka uliček mezi bloky sedel je přibližně 0,58m, což umožňuje pohodlný pohyb mezi sedačkami. Turistická sekc羟 horní palubě je sestavena dvou bloků pro dva na obou stranách a blokem pro čtyři cestující uprostřed. Každému jednotlivci poskytuje tato sestava přibližně šířku sedadla 0,5m, což je adekvátní prostor i pro dlouhé cesty neposkytuje však takovou míru pohybu jako sedačka v ostatních třídách. Zobrazení obr.3.41.

![Obr.3.40. Paluba A380 a) turistická třída b) první třída (www.airliners.net)](image)

B) Rozměry kabiny

Sekce pro cestující „business class“ na horní palubě jsou sestaveny v blokách po třech vedle sebe tak, že prostory řad jsou posunuty o přibližně půl sedačky dozadu oproti řadám krajním. Jednotlivé bloky sedel jsou široké 1,37m, což každému cestujícímu poskytuje přibližně 0,65m, tento prostor poskytuje vysoké pohodlí i na dálkových letech. Šířka uliček mezi bloky sedel je přibližně 0,58m, což umožňuje pohodlný pohyb mezi sedačkami. Turistická sekc羟 horní palubě je sestavena dvou bloků pro dva na obou stranách a blokem pro čtyři cestující uprostřed. Každému jednotlivci poskytuje tato sestava přibližně šířku sedadla 0,5m, což je adekvátní prostor i pro dlouhé cesty neposkytuje však takovou míru pohybu jako sedačka v ostatních třídách. Zobrazení obr.3.41.

![Obr.3.41. Průřez horní paluby A380 a) business class b) turistická třída (zdroj:[13])]()
C) Zhodnocení

Pro objektivní hodnocení komfortu, pohodlí, použitího uspořádání a ekonomické výhodnosti není zatím dostatek praktických informací. V současné době jsou v běžném provozu pouze 4 stroje toho typu. Kapacita 555 cestujících a použití pro mezikontinentální lety opět klade zvýšené nároky na uspořádání kabiny a prostor pro každého cestujícího. Uspořádání obou palub do více sekcí oddělených servisními prosty odbourává nepříjemné psychologické problémy cestujících (tunelový efekt, klaustrofobie). Rozlehle přístupné prostory kabiny, moderní vzhled a výbava zpříjemňují i extrémně dlouhé lety cestujícím i posádku. Cíl primárně stanovený společností Airbus (konkurence schopnost B747) je z hlediska kabiny pro cestující je splněn. (zdroj [13])

![A380-800](www.airliners.net)

3.3.3. Srovnání letadel pro mezikontinentální lety

<table>
<thead>
<tr>
<th></th>
<th>kapacita</th>
<th>dolet (km)</th>
<th>počet prodaných kusů *</th>
<th>cestovní rychlost</th>
</tr>
</thead>
<tbody>
<tr>
<td>B747-400</td>
<td>416</td>
<td>13,450</td>
<td>1376</td>
<td>0.85 Mach</td>
</tr>
<tr>
<td>A380-800</td>
<td>555</td>
<td>15,200</td>
<td>192**</td>
<td>0.85 Mach</td>
</tr>
</tbody>
</table>

* Hodnota uvádí počet dodaných letadel všech verzí
** Počet všech zatím objednaných

Závěrečné porovnání A380 a B747 z hlediska kabin pro cestující není jednoduché, komfortem a rozptylením během letu jsou si prakticky vyrovnáni. Kabina B747 poskytuje léty prověřený standart, naopak kabina A380 poskytuje nejmodernější řešení a potenciál pro další rozvoj.

3.3.4. Závěr

ZÁVĚR

Kompletně pokrýt veškeré aspekty ovlivňující návrh a konstrukci kabin pro cestující je vzhledem k rozsahu práce nerealizovatelné. Základní snahou je pouze nastínění základních ovlivňujících faktorů a požadavků. Samotnou podstatou práce je zachycení co nejširšího spektra pohledů na zadaný problém. Toto spektrum zahrnuje technické požadavky kladené normami, konstrukčními náležitostmi a palubním vybavením. Neméně důležitou částí jsou moderní faktory ovlivňující leteckou dopravu. Těmito faktory se rozumí vliv současného trhu letecké dopravy, vzrůstající ceny pohonných hmot a proměny poptávky společnosti v průběhu let. Posledním popisovaným pohledem je maximální uspokojení potřeb samotných cestujících během pobytu na palubě dopravních letadel.

Práce jako celek je koncipována série pomyslných logických kroků při vytváření základních idejí uspořádání prostoru pro cestující. Sled jednotlivých kroků je realizován následujícím způsobem. Popis postupného historického vývoje dopravních letadel jako celku z důrazem na zásadní proměny prostoru pro cestující. Požadavky vyplývající z regulací norem FAR/CS. Technická realizace, přehled palubního vybavení a standardních postupů při návrhů kabiny pro cestující. Důležitou a rozsáhlou částí je uvedení přehledu používaných kabin dopravních letadel. V závislosti na nejčastějším způsobu použití jednotlivých letadel. Toto rozdělení při univerzálnosti těchto strojů pouze teoretické pro potřeby studie. Při neustálém dynamickém rozvoji dnešního trhu letecké dopravy je nezbytně nutná další studie tohoto problému.
LITERATURA

[2] FAR/CS (JAR) 25

[8] Empresa Brasileira de Aeronáutica: Emb 120 Brasilia Airport Planning

