Show simple item record

Růst trhliny v blízkoprahové únavové oblasti u ultra-jemnozrnné mědi

dc.contributor.authorArzaghi, Mandanacs
dc.contributor.authorFintová, Stanislavacs
dc.contributor.authorSarrazin-Baudoux, Christinecs
dc.contributor.authorKunz, Ludvíkcs
dc.contributor.authorPetit, Jeancs
dc.date.accessioned2020-08-04T11:04:30Z
dc.date.available2020-08-04T11:04:30Z
dc.date.issued2014-08-08cs
dc.identifier.citationIOP Conference Series: Materials Science and Engineering. 2014, vol. 63, issue 1, p. 1-9.en
dc.identifier.issn1757-8981cs
dc.identifier.other110695cs
dc.identifier.urihttp://hdl.handle.net/11012/137196
dc.description.abstractThe near threshold fatigue crack growth in ultrafine-grained (UFG) copper at room temperature was studied in comparison to conventional coarse-grained (CG) copper. The fatigue crack growth rates da/dN in UFG copper were enhanced at <K > 7 MPa@m compared to the CG material. The crack closure shielding, as evaluated using the compliance variation technique, was shown to explain these differences. The effective stress intensity factor amplitude <Keff appears to be the same driving force in both materials. Tests performed in high vacuum on UFG copper demonstrate the existence of a huge effect of environment with growth rates higher of about two orders of magnitude in air compared to high vacuum. This environmental effect on the crack path and the related microstructure is discussed on the basis of fractography observations performed using scanning electron microscope and completed with field emission scanning electron microscope combined with the focused ion beam technique.en
dc.description.abstractThe near threshold fatigue crack growth in ultrafine-grained (UFG) copper at room temperature was studied in comparison to conventional coarse-grained (CG) copper. The fatigue crack growth rates da/dN in UFG copper were enhanced at <K > 7 MPa@m compared to the CG material. The crack closure shielding, as evaluated using the compliance variation technique, was shown to explain these differences. The effective stress intensity factor amplitude <Keff appears to be the same driving force in both materials. Tests performed in high vacuum on UFG copper demonstrate the existence of a huge effect of environment with growth rates higher of about two orders of magnitude in air compared to high vacuum. This environmental effect on the crack path and the related microstructure is discussed on the basis of fractography observations performed using scanning electron microscope and completed with field emission scanning electron microscope combined with the focused ion beam technique.cs
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherIOP Publishingcs
dc.relation.ispartofIOP Conference Series: Materials Science and Engineeringcs
dc.relation.urihttp://iopscience.iop.org/article/10.1088/1757-899X/63/1/012158cs
dc.rightsCreative Commons Attribution 3.0 Unportedcs
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/cs
dc.subjectrůst únavové trhliny
dc.subjectultra-jemnozrnné Cu
dc.subjectfatigue crack rowthen
dc.subjectultrafinegrained Cuen
dc.titleNear threshold fatigue crack growth in ultrafinegrained copperen
dc.title.alternativeRůst trhliny v blízkoprahové únavové oblasti u ultra-jemnozrnné mědics
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé kovové materiály a kompozity na bázi kovůcs
sync.item.dbidVAV-110695en
sync.item.dbtypeVAVen
sync.item.insts2020.08.04 13:04:30en
sync.item.modts2020.08.04 12:41:14en
dc.coverage.issue1cs
dc.coverage.volume63cs
dc.identifier.doi10.1088/1757-899X/63/1/012158cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1757-8981/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported