Show simple item record

dc.contributor.authorŠesták, Petrcs
dc.contributor.authorFriák, Martincs
dc.contributor.authorHolec, Davidcs
dc.contributor.authorVšianská, Monikacs
dc.contributor.authorŠob, Mojmírcs
dc.date.accessioned2020-08-04T11:04:31Z
dc.date.available2020-08-04T11:04:31Z
dc.date.issued2018-10-24cs
dc.identifier.citationNanomaterials. 2018, vol. 8, issue 11, p. 873-872.en
dc.identifier.issn2079-4991cs
dc.identifier.other151452cs
dc.identifier.urihttp://hdl.handle.net/11012/137245
dc.description.abstractWe present an ab initio and atomistic study of the stress-strain response and elastic stability of the ordered Fe3Al compound with the D03 structure and a disordered Fe-Al solid solution with 18.75 at.% Al as well as of a nanocomposite consisting of an equal molar amount of both phases under uniaxial loading along the [001] direction. The tensile tests were performed under complex conditions including the effect of the lateral stress on the tensile strength and temperature effect. By comparing the behavior of individual phases with that of the nanocomposite we find that the disordered Fe-Al phase represents the weakest point of the studied nanocomposite in terms of tensile loading. The cleavage plane of the whole nanocomposite is identical to that identified when loading is applied solely to the disordered Fe-Al phase. It also turns out that the mechanical stability is strongly affected by softening of elastic constants C and/or C66 and by corresponding elastic instabilities. Interestingly, we found that uniaxial straining of the ordered Fe3Al with the D03 structure leads almost to hydrostatic loading. Furthermore, increasing lateral stress linearly increases the tensile strength. This was also confirmed by molecular dynamics simulations employing Embedded Atom Method (EAM) potential. The molecular dynamics simulations also revealed that the thermal vibrations significantly decrease the tensile strength.en
dc.formattextcs
dc.format.extent873-872cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofNanomaterialscs
dc.relation.urihttps://www.mdpi.com/2079-4991/8/11/873cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectFe-Alen
dc.subjectsuperalloysen
dc.subjectorderen
dc.subjecttensile strengthen
dc.subjectelasticityen
dc.subjectab initioen
dc.subjectstabilityen
dc.subjectnanocompositeen
dc.titleStrength and Brittleness of Interfaces in Fe-Al Superalloy Nanocomposites under Multiaxial Loading: An ab initio and Atomistic Studyen
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé kovové materiály a kompozity na bázi kovůcs
sync.item.dbidVAV-151452en
sync.item.dbtypeVAVen
sync.item.insts2020.08.04 13:04:31en
sync.item.modts2020.08.04 12:42:28en
dc.coverage.issue11cs
dc.coverage.volume8cs
dc.identifier.doi10.3390/nano8110873cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2079-4991/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International