Shepherding Hordes of Markov Chains
Syntéza topologie v Markovovských řetězcích

View/ Open
Date
2019-04-17Author
Altmetrics
10.1007/978-3-030-17465-1_10
Metadata
Show full item recordAbstract
This paper considers large families of Markov chains (MCs) that are defined over a set of parameters with finite discrete domains. Such families occur in software product lines, planning under partial observability, and sketching of probabilistic programs. Simple questions, like does at least one family member satisfy a property?, are NP-hard. We tackle two problems: distinguish family members that satisfy a given quantitative property from those that do not, and determine a family member that satisfies the property optimally, i.e., with the highest probability or reward. We show that combining two well-known techniques, MDP model checking and abstraction refinement, mitigates the computational complexity. Experiments on a broad set of benchmarks show that in many situations, our approach is able to handle families of millions of MCs, providing superior scalability compared to existing solutions. Tento článek uvažuje problém syntézy topologie v Markovovských řetězcích a navrhuje řešení pomocí abstrakce založené na Markovovských rozhodovacích procesech a iterativní zjemněvání této abstrakce.
Keywords
parametric Markov chains, synthesis from specification, Markov Decision Processes, abstraction refinementPersistent identifier
http://hdl.handle.net/11012/195257Document type
Peer reviewedDocument version
Final PDFSource
Proceedings of 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 2019, vol. 11428, p. 172-190.https://link.springer.com/chapter/10.1007/978-3-030-17465-1_10