Show simple item record

dc.contributor.authorKšica, Filipcs
dc.contributor.authorHadaš, Zdeněkcs
dc.date.accessioned2021-03-04T11:55:14Z
dc.date.available2021-03-04T11:55:14Z
dc.date.issued2018-10-10cs
dc.identifier.citationMATEC Web of Conferences. 2018, issue 211, p. 1-6.en
dc.identifier.issn2261-236Xcs
dc.identifier.other151685cs
dc.identifier.urihttp://hdl.handle.net/11012/196412
dc.description.abstractThe stability of a machining process is directly affected by the dynamic response between the tool and the workpiece. However, as the tool moves along the path, the dynamic stiffness of the machine tool changes. To determine the position-dependent dynamic stiffness accurately, a computationally efficient methodology based on a complex virtual model is presented. The virtual model is assembled using Finite Element Method and is effectively reduced via Component Mode Synthesis and transformation to a State-Space Multi-Input-Multi-Output system. Combination of these techniques allows time-efficient response simulations with significantly less computational effort than the conventional full Finite Element models. Furthermore, they describe the behaviour of the complex structure more accurately opposed to the commonly used models based on a simple 1 Degree-of-Freedom systems. The reduced model is used to simulate dynamic response of the structure to a cutting force during operation. A response is measured on an existing machine to modify the virtual model by incorporating fuzzy parameters, such as damping. The stability regions are calculated for variable positions, resulting in position-dependent lobe diagrams. The presented approach can be used to create a map of stable zones to predict and prevent unstable behaviour during operation.en
dc.formattextcs
dc.format.extent1-6cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherEDP Sciencescs
dc.relation.ispartofMATEC Web of Conferencescs
dc.relation.urihttps://www.matec-conferences.org/articles/matecconf/abs/2018/70/matecconf_vetomacxiv2018_17005/matecconf_vetomacxiv2018_17005.htmlcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectVirtual modelingen
dc.subjectMachine toolsen
dc.subjectComponent Mode Synthesisen
dc.titlePrediction of position-dependent stability lobes based on reduced virtual modelen
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav mechaniky těles, mechatroniky a biomechanikycs
sync.item.dbidVAV-151685en
sync.item.dbtypeVAVen
sync.item.insts2021.03.04 12:55:14en
sync.item.modts2021.03.04 12:14:14en
dc.coverage.issue211cs
dc.identifier.doi10.1051/matecconf/201821117005cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2261-236X/cs
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International