• čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • English 
    • čeština
    • English
    • русский
    • Deutsch
    • français
    • polski
    • українська
  • Login
View Item 
  •   Repository Home
  • Sborníky z konferencí
  • Fakulta elektrotechniky a komunikačních technologií
  • Konference Student EEICT
  • Student EEICT 2015
  • View Item
  •   Repository Home
  • Sborníky z konferencí
  • Fakulta elektrotechniky a komunikačních technologií
  • Konference Student EEICT
  • Student EEICT 2015
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PSG-Based Classification of Sleep Phases

Thumbnail
View/Open
eeict2015-215-kralik.pdf (640.1Kb)
Date
2015
Author
Králík, M.
Altmetrics
Metadata
Show full item record
Abstract
This work is focused on classification of sleep phases using artificial neural network. The unconventional approach was used for calculation of classification features using polysomnographic data (PSG) of real patients. This approach allows to increase the time resolution of the analysis and, thus, to achieve more accurate results of classification.
Keywords
polysomnography, sleep scoring, classification features, neural networks
Persistent identifier
http://hdl.handle.net/11012/42980
Document type
Peer reviewed
Document version
Final PDF
Source
Proceedings of the 21st Conference STUDENT EEICT 2015. s. 215-217. ISBN 978-80-214-5148-3
http://www.feec.vutbr.cz/EEICT/
Collections
  • Student EEICT 2015 [169]
Citace PRO

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV
 

 

Browse

All of repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Portal of libraries | Central library on Facebook
DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback | Theme by @mire NV