Show simple item record

dc.contributor.authorOravec, M.
dc.contributor.authorPavlovicova, J.
dc.date.accessioned2016-03-24T06:42:48Z
dc.date.available2016-03-24T06:42:48Z
dc.date.issued2007-04cs
dc.identifier.citationRadioengineering. 2007, vol. 16, č. 1, s. 51-57. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/57277
dc.description.abstractIn this contribution, human face as biometric is considered. Original method of feature extraction from image data is introduced using MLP (multilayer perceptron) and PCA (principal component analysis). This method is used in human face recognition system and results are compared to face recognition system using PCA directly, to a system with direct classification of input images by MLP and RBF (radial basis function) networks, and to a system using MLP as a feature extractor and MLP and RBF networks in the role of classifier. Also a two-stage method for face recognition is presented, in which Kohonen self-organizing map is used as a feature extractor. MLP and RBF network are used as classifiers. In order to obtain deeper insight into presented methods, also visualizations of internal representation of input data obtained by neural networks are presented.en
dc.formattextcs
dc.format.extent51-57cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2007/07_01_51_57.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectBiometricsen
dc.subjectface recognitionen
dc.subjectneural networksen
dc.subjectPCAen
dc.subjectmultilayer perceptronen
dc.subjectradial-basis function networken
dc.subjectself-organizing mapen
dc.subjectvisualizationen
dc.subjectLDAen
dc.subjectkernelsen
dc.titleFace Recognition Methods Based on Feedforward Neural Networks, Principal Component Analysis and Self-Organizing Mapen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue1cs
dc.coverage.volume16cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported License