Show simple item record

dc.contributor.authorDjigan, V. I.
dc.date.accessioned2016-04-25T08:10:54Z
dc.date.available2016-04-25T08:10:54Z
dc.date.issued2005-09cs
dc.identifier.citationRadioengineering. 2005, vol. 14, č. 3, s. 28-36. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/58009
dc.description.abstractThe paper presents a family of the sliding window RLS adaptive filtering algorithms with the regularization of adaptive filter correlation matrix. The algorithms are developed in forms, fitted to the implementation by means of parallel computations. The family includes RLS and fast RLS algorithms based on generalized matrix inversion lemma, fast RLS algorithms based on square root free inverse QR decomposition and linearly constrained RLS algorithms. The considered algorithms are mathematically identical to the appropriate algorithms with sequential computations. The computation procedures of the developed algorithms are presented. The results of the algorithm simulation are presented as well.en
dc.formattextcs
dc.format.extent28-36cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2005/05_03_28_36.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectAdaptive filteringen
dc.subjectRLSen
dc.subjectfast RLSen
dc.subjectQR decomposi-tionen
dc.subjectlinear constraintsen
dc.subjectparallel computationsen
dc.titleRLS Adaptive Filtering Algorithms Based on Parallel Computationsen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue3cs
dc.coverage.volume14cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported License