Zobrazit minimální záznam

dc.contributor.authorUsakova, A.
dc.contributor.authorKotuliakova, J.
dc.contributor.authorZajac, M.
dc.date.accessioned2016-04-28T11:57:21Z
dc.date.available2016-04-28T11:57:21Z
dc.date.issued2002-09cs
dc.identifier.citationRadioengineering. 2002, vol. 11, č. 3, s. 40-42. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/58157
dc.description.abstractA convolution is mathematical operation used in signal processing, in the homomorphous signal processing and digital image processing (e.g. image interpolation). In regard of computational complexity of the convolution in the time domain, it used to calculate in the other domain. Exp. x(n) * h(n) R X(W) × H(W), resp. X(W) × H(W), shows that a convolution in the time domain corresponds to multiplication in the Z domain, respectively frequency domain. This paper shows utilization of Walsh-Hadamard orthogonal transformations for convolution.en
dc.formattextcs
dc.format.extent40-42cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2002/02_03_40_42.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectConvolutionen
dc.subjectWalsh-Hadamard transformationen
dc.subjectdyadic convolutionen
dc.titleWalsh - Hadamard Transformation of a Convolutionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue3cs
dc.coverage.volume11cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Creative Commons Attribution 3.0 Unported License
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Creative Commons Attribution 3.0 Unported License