Show simple item record

dc.contributor.authorTobes, Z.
dc.contributor.authorRaida, Zbyněk
dc.date.accessioned2016-05-05T10:58:10Z
dc.date.available2016-05-05T10:58:10Z
dc.date.issued1998-06cs
dc.identifier.citationRadioengineering. 1998, vol. 7, č. 2, s. 9-14. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/58333
dc.description.abstractIn this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.en
dc.formattextcs
dc.format.extent9-14cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/1998/98_02_02.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectanalog recurrent networksen
dc.subjectconvergence propertiesen
dc.subjectstabilityen
dc.subjectmodelling of operational amplifiersen
dc.titleAnalysis of Recurrent Analog Neural Networksen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue2cs
dc.coverage.volume7cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported License