Show simple item record

dc.contributor.authorTan, Z. H.
dc.contributor.authorJia, W. M.
dc.contributor.authorJin, W.
dc.date.accessioned2018-06-18T12:49:20Z
dc.date.available2018-06-18T12:49:20Z
dc.date.issued2018-06cs
dc.identifier.citationRadioengineering. 2018 vol. 27, č. 2, s. 595-601. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/83044
dc.description.abstractRecently, a new robust adaptive beamforming (RAB) algorithm has been proposed to reconstruct the interference-plus-noise covariance matrix (IPNCM) based on narrowing the interference angular domain and using an annular uncertainty set (NIAD-AUS). The method is robust against unknown arbitrary-type mismatches. However, its computational complexity will increase exponentially with the number of array sensors. In this paper, a novel method is proposed to solve this problem. First, k-means clustering (KMC) algorithm is utilized to estimate the annulus uncertainty set with fewer clustering weight points rather than whole sampling. Second, the KMC Capon spectrum is used to reconstruct the IPNCM. Compared with the previous reconstruction-based algorithms, the proposed approach can retain the high performance of the state-of-the-art NIAD-AUS algorithm. More importantly, it can also obtain the IPNCM more quickly. Lastly, simulation results demonstrate the effectiveness and robustness of the proposed algorithm.en
dc.formattextcs
dc.format.extent595-601cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2018/18_02_0595_0601.pdfcs
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectRobust adaptive beamformingen
dc.subjectk-means clusteringen
dc.subjectreconstruction-based algorithmen
dc.subjectlow complexityen
dc.titleRobust Adaptive Beamforming Using k-means Clustering: A Solution to High Complexity of the Reconstruction-Based Algorithmen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue2cs
dc.coverage.volume27cs
dc.identifier.doi10.13164/re.2018.0595en
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International