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Abstract: Some of the state-of-the-art audio declipping methods are not consistent with the observed
signal, meaning that they do not keep the a priori undegraded (reliable) samples. These samples can
be directly substituted in the reconstructed signals, but this may create audible artifacts due to the
sharp transitions between the declipped and the substituted parts. We propose two methods based on
audio inpainting, which deal with these transitions. As a result, we observe a significant improvement
of the PEAQ ODG values, but only for some of the declipping algorithms considered.
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1 INTRODUCTION

Clipping is a nonlinear distortion that cuts off signal peaks exceeding the allowed dynamic range
[−θc,θc], where the value θc > 0 is referred to as the clipping threshold. Formally, for the n-th
sample of the signal x ∈ CL, clipping produces the sample θc · sgn(xn) for |xn| ≥ θc, and keeps the
sample xn otherwise.

The nonsmooth transitions caused by clipping produce higher harmonics that were not originally
present in the signal, which is perceived as an unpleasant distortion. Not only clipping degrades
the perceptual quality of audio signals [1], it also worsens further processing conditions, such as
automatic speech recognition [2] or voice-based Parkinson’s disease detection [3].

The reconstruction of a signal from its clipped observation is generally referred to as declipping. For
a large overview of the declipping methods, see the audio declipping survey [4].

In declipping, it feels natural to require that the declipped samples should exceed the high (θc) and
low (−θc) clipping thresholds and that the samples that were not altered by clipping (i.e., the reliable
samples) should remain the same. Signals satisfying these conditions form the consistent set and
methods that find a solution belonging to this set are naturally referred to as consistent methods. On
the other hand, inconsistent methods only penalize the distance of the solution from the consistent set.
See Fig. 1 for the comparison of both approaches. The inconsistent methods include Constrained Or-
thogonal Matching Pursuit (C-OMP [5]), Plain and Perceptually-motivated Compressed Sensing L1
(CSL1, PCSL1 [6]), Parabola-weighted Compressed Sensing L1 (PWCSL1 [4]), Declipping with Em-
pirical Wiener Shrinkage and Social Sparsity Declipping with Persistent Empirical Wiener (SS EW,
SS PEW [7]), or Dictionary Learning (DL [8]). The advantages are usually their low computational
complexity, and the possibility to fully exploit any prior about the signal structure, such as the sparsity
of its time-frequency representation.

However, sticking to the inconsistent solution implies that the knowledge of the reliable samples from
the clipped signal is undervalued. This paper, therefore, addresses the issue of enhancing the quality
of inconsistent audio declipping methods by replacing the reliable samples.
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Figure 1: Demonstration of consistent and inconsistent declipping solutions on a short piece of audio
signal including the application of the straightforward replacement of the reliable samples (RR).

2 PROBLEM FORMULATION

The easiest way to fully exploit the information stored in the reliable samples is simply to substitute
them in place of the inconsistent samples. This procedure naturally increases the signal-to-distortion
ratio (SDR) and in a large number of cases also improves the perceptual quality according to the
perceptual measures, such as PEAQ [9].

On the other hand, the main problem of this technique is the possibility of creating sharp transitions
between the clipped and the replaced reliable parts, as illustrated in Fig. 1. Such a nonsmooth phe-
nomenon creates higher harmonic spectral components and thus degrades the perceived audio quality.

To leverage the knowledge of the reliable samples while avoiding the sharp edges on the transitions,
we present a novel method based on audio inpainting. The main idea lies in “deleting” a number
of samples in the beginning and at the end of each clipped part and then estimating the values of
these samples using an arbitrary inpainting method, while the rest of the clipped parts, as well as
the (replaced) reliable samples are fixed. The set of signals meeting such conditions will be denoted
Γ. Suitable audio inpainting methods, which make use of the just defined set Γ, are described in the
following section.

3 INPAINTING THE TRANSITIONS

Audio signals are typically sparse in a time-frequency (TF) representation, which is caused by their
harmonic and short-time stationary nature. Since the problem of finding a signal in Γ is ill-posed
(there are infinitely many solutions meeting the conditions), we may regularize it such that the solution
is desired to have a sparse TF representation or a TF representation with minimal `1 norm [10].
The sparsity-based audio inpainting problem can be formulated as one of the following optimization
problems:

argmin
c
‖c‖1 +g(A∗c), (1)

argmin
x
‖Ax‖1 +g(x). (2)

The formulations (1) and (2) are referred to as the synthesis and analysis formulations, respectively.
The variable c ∈ CN denotes a TF representation of a signal x ∈ CL. We use a redundant transform,
such that the analysis operator A : CL → CN , N > L, produces TF coefficients of a signal, and the
synthesis operator A∗ : CN → CL reconstructs the signal out of the coefficients. In such a redundant
case, the two formulations are not equivalent. Furthermore, we suppose A∗A = Id.
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In both formulations, the norm ‖·‖1 promotes sparsity of the TF coefficients, and g enforces the signal
consistency in the time domain. As indicated above, we may put g = ιΓ, i.e., the indicator function,
which takes on zero value for elements belonging to Γ and infinity otherwise.

The problem (1) can be solved via the Douglas–Rachford algorithm [11, Sec. IV]. Keeping the nota-
tion of [11], let f1 = ‖ ·‖1 and f2 = g◦A∗. Then, the proximal mapping proxγ f1

= proxγ‖·‖1
is the soft

thresholding with threshold γ and proxγ f2
= Id+A◦ (proxγg− Id)◦A∗ [11, Tab. I, ix]. When g = ιΓ,

proxτg = proxιΓ
is the projection onto Γ, i.e., it replaces all the fixed samples and keeps the rest.

The problem (2) can be solved via the Chambolle–Pock algorithm [12, Alg. 1]. Keeping the notation,
we put F = ‖ · ‖1 and G = g; the linear operator A is taken care of by the algorithm. The procedure
makes use of the proximal mappings proxσF∗ and proxτG, where the asterisk in F∗ denotes the convex
conjugate of the function F . It holds proxσF∗ = Id−σproxF/σ(·/σ) [12, Eq. (6)]. In our settings,
proxσ‖·‖∗1 = Id−σprox‖·‖1/σ(·/σ), i.e., the soft thresholding operator is used with the threshold 1/σ.

4 ADAPTIVE RELIABILITY OF THE DECLIPPED SAMPLES

The model in the previous section can be understood such that we trust the originally reliable sam-
ples and also some of the declipped samples, while we do not trust the declipped samples near the
transitions at all. A natural generalization would be that the reliability of the declipped samples is not
only binary. This can be implemented in the function g. If we take the declipped signal and simply
substitute the reliable samples, we obtain the signal x̂. Per each declipped sample n, we may put

gn(xn) =

{
wn · |xn− x̂n|2/2 for x̂n declipped,

ι{x̂n}(xn) for x̂n reliable,
g(x) =

L

∑
n=1

gn(xn), (3)

where wn ≥ 0 are the reliability weights: the greater the wn, the more we trust the sample x̂n. To apply
the previously described proximal algorithms, we use the proximal mapping of the function g, which
is defined elementwise as [13, Thm. 6.6, Ex. 6.65]:

xn 7→
wn

wn +1
x̂n +

1
wn +1

xn. (4)

The simple inpainting approach from Sec. 3 fits this model with wn = ∞ for the fixed samples and
wn = 0 for the transitions to be filled. For the generalized method, we suggest using a bump function
in each declipped segment to assign the weights wn, since the transitions are less trusted than the
declipped samples in the middle of each segment.

5 EXPERIMENTS AND RESULTS

For the experiments, 10 audio excerpts sampled at 44.1 kHz with their approximate length of 7 sec-
onds were used. These signals were artificially clipped as defined in the Introduction with 7 different
threshold based on the input SDR. The restored signals were obtained using the inconsistent meth-
ods mentioned in the Introduction and included in the survey [4] (C-OMP, CSL1, PCSL1, PWCSL1,
SS EW, SS PEW, and DL). Except for C-OMP and DL, the methods are based on the convex sparsity-
inspired formulation (1) with g measuring the distance from the consistent set of the declipping prob-
lem. C-OMP aims at approximating the non-convex sparse synthesis problem in a greedy way, con-
straining the solution to lie near the consistent set. Finally, DL enhances the sparsity based approach
by searching not only for the signal but also the best operator A∗ to allow for sparser solution.

As the TF transform A, we used the discrete Gabor transform, implemented for MATLAB in the
toolbox LTFAT [14]. Two settings of the transform were tested: The first system was defined by
the Hann window of length 8192 samples, window shift 2048 and 8192 frequency channels. The
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Figure 2: Average PEAQ performance of the inconsistent methods and the replacing strategies.

second system used the same window shape, but the numerical parameters were 4096, 1024 and
4096, respectively. Both systems were scaled to satisfy the relation A∗A = Id.

In the experiment, the Douglas–Rachford algorithm was applied with γ = 1 and λn = 1 for all n. It
stopped either after 500 iterations or when the relative change of the solution dropped below 5 ·10−4.
Similarly, the Chambolle–Pock algorithm was applied with τ = σ = 1 and the same stopping criteria.

The perceptual quality of audio signals was evaluated using PEAQ (Perceptual Evaluation of Audio
Quality) [9], specifically the free MATLAB implementation [15]. PEAQ predicts the degradation
using a ODG scale ranging from −4 (very annoying) to 0 (imperceptible).

Fig. 2 presents the PEAQ ODG values of the declipped signal, prior to any replacement, and the PEAQ
ODG improvement (∆ ODG) for different postprocessing strategies: basic replacement (RR), the
simple inpainting method from Section 3 (INP1) and the modified inpainting method from Section 4
(INP2). Only a selection of all the possible settings is plotted, namely INP1 used the synthesis
formulation and the TF transform with longer window, INP2 used the analysis formulation and the
TF transform with shorter window. Per each declipped segment of length D, INP1 filled d samples at
each of the two transitions, with d = max(bD/3c,10). INP2 was applied with the weights according
to the function 10sin(t)1/2, with t representing D evenly spaced samples from 0 to π.

The most significant observation here is that the inpainting-based strategies outperform the basic
replacement strategy in case of the methods that were inferior prior to any replacement. On the other
hand, these strategies fail to enhance the a priori favorable methods, such as SS PEW.

Furthermore, comparing the bottom graphs leads to a clear conclusion that INP2 magnifies both the
gains and the losses of INP1.
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6 CONCLUSION

We have presented two inpainting-based methods, which serve as a postprocessing procedure for in-
consistent audio declipping. The goal was to maximally exploit the reliable samples of the original
declipping problem while avoiding sharp transitions in the signal after a simple substitution. The
proposed methods enhance the quality of the resulting audio signal based on PEAQ ODG, but only
for some of the declipping methods involved. Although the improvement seems to be rather signif-
icant in these cases (up to 1 degree on the ODG scale), the inpainting methods do not improve the
reconstruction quality, compared to the basic replacement strategy, for the rest of the methods.
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