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Summary
This master thesis is dealing with modeling of the rotor system based on the numerical
transfer matrix calculations. This method is suitable for fast analysis of beam bodies to
observe the resulting deflection and critical speed in regard to the initial circumstances.
The bearing stiffness is a significant input factor that affects the outcomes of the analysis,
especially the critical speed the rotor system.
First of all,the available approaches to analyze the bended beam bodies are discussed
focused on explanation of the transfer matrix algorithm. After that, the approach to
estimate the bearing stiffness based on the Hertz contact theory is presented. Further, a
brief explanation is given about the heat arising in the rotor bearings.
The following chapters are focused on description of the software solver for rotor system
analysis based on the transfer matrix method, considering the bearing stiffness estimation
based on Hertz contact theory, with possible calculations of the induced bearing heat
losses.
In the end, the practical use of the developed software is presented with the analysis of the
obtained results of the rotor deflection, critical speed, and bearing power loss. There is
also discussed a comparison of the different bearing stiffness estimation with the impact to
the computation outcomes, especially on the rotor critical speed, followed by comparison
conclusion implementation into rotor system analysis.

Abstrakt
Tato diplomová práce se zabývá modelováním rotorových soustav pomocí numerické metody
přenosových matic. Tato metoda je pro svou časovou efektivitu vhodná pro výpočty
ohýbaných nosníků a analýzu výsledného průhybu a kritických otáček dané rotorové
soustavy s ohlednem na vstupní počáteční podmínky. Jedním z významných vstupních
parametrů takovéto analýzy je tuhost ložisek rotoru a její vliv na výsledné kritické otáčky
rotoru.
Nejdříve jsou prezentovány dostupné výpočtové metody pro ohýbané nosníky se zaměřením
na vysvětlění principu metody přenosových matic. Následuje nastínění výpočtu tuhosti
ložiska na základě teorie Hertzova kontaktního tlaku. Dále je stručně vysvětlen princip
výpočtu tepelných ztrát generovaných v ložiscích rotoru.
Další kapitoly se zaobírají popisem navrženého řešice rotorových systémů, založeného
na metodě přenosových matic, s možností stanovit tuhost ložiska na základě Hertzova
kontaktního tlaku a možnosí stanovit tepelné ztráty v ložiscích rotoru.
Nakonec je ukázáno praktcké řešení zadaného rotoru s pomocí vyvinutého programu spolu
s uvedením výsledné průhybové čáry, kritických otáček a tepelných ztrát v ložiscích. V
závěru je také provedeno srovnání výsledků pro další přístup stanovení tuhosti ložiska,
zvláště pak vliv na kritické otáčky daného rotoru, závery ze vzájemného porovnání jsou
následovně implementovány ve vyvinutém řešiči.
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Rozsšířený abstrakt
Tato diplomová práce se zabývá modelováním rotorových soustav pomocí přenosových
matic, s uvažením vlivu magnetického tahu, charakteristického pro elektrické stroje. Dal-
sším významným uvažovaným vstupním parametrem je hodnota tuhosti ložiskových pod-
por řešeného rotoru. Výsledky statcké analýzy v podobě silových reakcí v ložiskových
podporách mohou být dále využity pro odhad tepelných ztrát indukovaných v ložiscích
hřídele rotoru.
Metoda přenosových matic je populární metoda pro řešení soustav diferenciálních rovnic
popisující systémy sériově řazených prvků. Hřídel v elektrickém stroji skládající se ze
segmentů o různých průřezech, nesoucí součásti, jako například ozubená kola, či řemenice,
a podepřený ložisky o určité tuhosti určitě může být chápán jako systém sériově řazených.
Metoda přenosových matic umožňuje časově efektivní řešení průhybu hřídele, stanovení
silových reakcí v pružných podporách a výpočet kritických otáček daného rotoru.
Tuhost ložiskových podpor, je významným parameterem, který ovlivňuje dynamické vlas-
nosti rotorové soustavy. V této práci je nastínen postup odhadu tuhosti valivého ložiska
na základě teorie Hertzova kontaktního tlaku, kdy lze stanovit tuhost kontaktu valivkého
elementu ložiska s s oběžnými dráhami vnějšího a vnitřního prstence ložiska, a to z geo-
metrickýc rozměrů daného ložiska.
Třecí ztráty generované v ložisku lze odhadnout na základě známého radiálního zatížení
ložiska a na provozních otáčkách. Ve třecích ztrátách lze zohlednit také vliv maziva
ložiska, případně těsnění ložiska.
Na základě teoretických poznatků výše zmíněných problematik, byl navržen softwarový
řešič, vyvinutý pomocí výpočtového přostředí MATLAB. Navržený program umožňuje
statickou a dynamickou analýzu zadané rotorové soustavy, pomocí algoritmu přenosových
matic, Výsledky silových reakcí lze v tomtéž řešiči použít pro stanovení tepelných ztrát
ve vybraném ložisku daného rotoru.
Navržený řešič byl použit pro dvě analýzy rotorové soustavy. V prvním případě byla
tuhost podpor stanovena na základě zmíněné Hertzovy teorie kontaktního tlaku, v druhém
případě byly tuhosti ložiskových podopor stanoveny na základě vztahu odvozeného z
předpokladu rozložení radiálního zatížení mezi více valivých elementů ložiska. Na základě
srovnání dosažených výsledků byla navržena jistá úprava v ovládání výpočtu v daném
programu, a to zejména s ohledem na kritické otáčky rotoru. Výpočet se musí skládat
dílčích iteračních výpočtů v případě, že tuhost ložiskových podpor není na počátku blíže
stanovena.
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1. Introduction
1.1. Motivation

Rotary machines are one of the most important elements of industrial devices and rotating
shafts are the most critical elements of these machines. The prime role of the shaft is
the power transmission, furthermore these shafts are supposed to bear other machine
parts like discs, bearings, gears, or rotors, especially in electric motors. There have been
developed various methods to analyse the rotary systems. One of these methods is the
transfer matrix method. The benefit of this method is the fact it is convenient to model
serial systems, which the shaft bearing plenty of other parts is indeed. Such shaft can
be split into particular segments. Individual segments can be described by its specific
transfer matrix. These matrices can be derived from dynamic equations or can be already
found as tabulated results in engineering handbooks. Because of the algorithm principle
this method is time efficient for such sort of problems in shaft analysis. In the end it
leads to estimate deflection and critical speed of the shaft and force reactions in the rotor
bearing. However there exist several factors that influence the result accuracy of the
computation compared to the real state. Especially in electric machines it depends on
how precisely the magnetic pull arising from the interaction between rotor and stator is
modelled. Moreover, it depends how the value of the stiffness of the bearing considered as
a spring support is estimated, these factors have consequently an impact to determined
deflection and critical speed of the shaft. One more output that can be estimated in the
rotor system analysis is heat loss generated in the rotor bearing. This variable is depended
on the specific bearing type, its reactions, which gives us a value of the bearing load, and
operational rotational speed of the rotor as well.

1.2. Problem definition

The problem addressed master thesis is numerical modelling of rotor bearing system. The
model should respect the following key factors: magnetic pull, bearing stiffness given by
specific type of the bearing chosen by designer, influence of the different approaches to
estimate bearing stiffness to critical speed, and bearing reactions consequently affecting
generated heat loss in the bearings.

1.3. Objectives settings
1. Research in field of mathematical modelling of electric engines rotor bearing system,

focused on application of the transfer matrix method.
2. Devise a software solver for simulating rotor bearing system with aim to obtain

deformation, critical speed of the rotor shaft and heat loss in the shaft bearings.
3. Implementation of methods for estimating bearing stiffness and heating losses in-

duced in the bearings into the rotor analysis.
4. Affect of bearing stiffness on rotor critical speed and bearing heat loss.
5. Analysis and comparison of obtained results.
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2. Beam computations
Rotary machine shaft can be modelled in several ways, from the theory of stress-strain
analysis it follows that suitable model for rotor shaft is one dimensional beam body.
Characteristic property of such model is that it includes three displacements and three
rotations as degrees of freedom in the endpoints of the beam body. Therefore, it makes it
possible to describe the body in cases when it is subjected to bending load. This chapter
is oriented on review of mathematical methods for beam models computations.

2.1. Castigliano’s Method

The main idea of this method in stress strain analysis theory is to estimate resulting
displacement in linear-elastic body systems of the point of causing force. It is defined
as partial derivative of strain energy of the entire system with respect to certain causing
force. The form for beam bending computation is mentioned below, in formula (2.1). The
limitation of this method is that it makes possible to obtain only the displacement uk in
point of causing force Fk [1].

uk =
∂A

∂Fk

=
∂

∂Fk

∫
γ

M2
y (x) dx

2EJy

=

∫
γ

My (x)

EJy

∂My

∂Fk

dx (2.1)

2.2. Deflection curve

This method is based on solving the differential equation for deflection curve of bended
beam, formula (2.2). Compared to the previous method it makes it possible to get the
outcome as shape function of the deflection along the whole loaded beam, and not only in
the points of certain force loading. The necessity for solving the equation is to introduce
boundary conditions which express the beam ending point state variables regarding to
the real mounting conditions of the beam [1].

EJy · wii(x) = −My(x) (2.2)

Deformation and internal force effects in arbitrarily point along the beam axes can be
described by following state variables:

• w displacement

• θ slope

• M bending momentum

• T transversal force

Governing equations, which makes is possible to solve the differential equation are [2]:

dw

dx
= −θ

dθ

x
=

M

EJ

dM

x
= T
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2.3. Method of initial parameters

Method of initial parameters is specific way to formulate general solution of differential
equation. The basis of this method is to transform boundary problem to initial problem.
Integration constants are expressed via function values of state variables in the origin
of the coordinate system, which is usually placed in the left side endpoint of the solved
beam. It is usual case that the parameters in the origin are unknown, and it is needed
to estimate them by transformation from conditions known in other points of the beam
system [2].
Significant advantage of this method is the possibility to solve the problems of beams on
elastic foundations with discontinuities along the beam span caused by applied forces or
segments with different cross section areas [2].
For instance, here will be shown solution of beam subjected to bending caused only by
transversal forces, as it is stated in [2].
The problem can be described by the homogeneous differential equation of the fourth
order with the solution in the following way.

wiv(x) = 0

wiii(x) = c1

wii(x) = c1x+ c2

wi(x) = c1
x2

2
+ c2x+ c3

w(x) = c1
x3

6
+ c2

x2

2
+ c3x

(2.3)

The boundary conditions (initial parameters) are:

w(0) wii(0) M(0) = −EJy · wii(0) T (0) = −EJy · wiii(0)

Estimated integration constants from the initial parameters are:

c1 =
T (0)

EJy

c2 =
M(0)

EJy

c3 = wi(0) c4 = w(0)

By substitution of attained constants to formulas in (2.3) the following system of equations
can be obtained.

w(x) = w(0) + wi(0) · x− M(0) · x2

2EJy

− T (0) · x3

6EJy

wi(x) = wi(0) · x− M(0) · x
EJy

− T (0) · x2

24EJy

M(x) = M(0) + T (0) · x
T (x) = T (0)

(2.4)

The results achieved in this section will be used later for explanation of principle of the
following method.
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2.4. Transfer matrix method

Transfer matrix method is a matrix form of method of initial parameters. During times
it had shown to be extraordinarily effective method for solving differential equations for
serial system. The method is characterized by progressive matrix multiplications along a
line of the serial system. This step leads to final matrix whose size does not depend on
the number of elements in the solved system, which is the significant advantage property
of this method in comparison with the finite element method [2], [3].

2.4.1. Establish of transfer matrix

The basic idea of the transfer matrix method will be explained on the previous example
with bended beam. The system of equations (2.4) can be written in matrix form as
follows [2]:


w
θ
M
T


x

=


1 x − x2

2EJy
− x3

6EJy

0 1 − −x
EJy

− x2

2EJy

0 0 1 x
0 0 0 1

 ·


w
θ
M
T


0

(2.5)

The state variables in the matrix form are gathered in a so-called state vector.
In short form it is denoted [2]:

{w}x = [C]0x,0 {w}0 (2.6)

Used notation means:

• {w}x state vector at specific point x along the axes of the beam body

• {w}0 initial state vector given by the values in the origin of the coordinates

• [C]0x,0 linear transformation; transfer matrix for the field on interval [0, x]

The transfer matrix can be derived in general for the problems described by differential
equations. The procedure will be shown again with the example of the bended beam.
The system of equations (2.3) can be written in matrix form.


w
wi

wii

wiii


x

=


1 x x2

2
x3

6

0 1 x x2

2

0 0 1 x
0 0 0 1

 ·


c4
c3
c2
c1


0

(2.7)

The system can be written in short form.

{w}′

x = [F ]x{c} (2.8)
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Used notation means:

• {w}′
x vector including solution of differential equation wiv(x) = 0

• {c} vector of integration constants

• [F ] fundamental matrix (Wronskian)

The initial parameters can be formulated in analogous way.

{w}′

0 = [F ]0{c} (2.9)

By execution of c from equation (2.9) and substitution into equation (2.6) it is obtained.

{w}′

x = [F ]x[F ]−1
0 {w}′

0 (2.10)

The vector {w}′
x can be transformed to vector {w}x by matrix [R] as follows:

w
wi

wii

wiii


x

=


1 0 0 0
0 1 0 0
0 0 −EJy 0
0 0 0 −EJy

 ·


w
wi

wii

wiii


0

(2.11)

By execution of {w}′
x from equation (2.11) and substitution into equation (2.10), the state

vector can be expressed.

{w}x = [R][F ]x[F ]−1
0 [R]−1{w}0 (2.12)

Observed from formula above, general formulation of transfer matrix is:

[C] = [R][F ]x[F ]−1
0 [R]−1 (2.13)

2.4.2. Computational algorithm

The general transfer formula (2.6) can be formulated for several beam segments in row
along the beam axis. Total length of the beam body is divided into specific sub-intervals
according to the specific elements [3]. For instance, according to the figure below.

Figure 2.1: Beam with denoted segments [3]
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Transfer formulas for each sub-interval are expressed in following forms [3].

{w}b = [C]1a,b{w}a
{w}c = [C]2b,c{w}b
{w}d = [C]3c,d{w}c
{w}e = [C]4d,e{w}d

(2.14)

The state vectors {w}a , {w}b , {w}c , {w}d contain state variables at dividing points. From
the equation system above it is obvious that vectors at dividing points can be progressively
expressed by the vector from the initial point, that leads to system of equations [3].

{w}c = [C]2a,b[C]1a{w}a
{w}d = [C]3d,c[C]2c,b[C]1b,a{w}a
{w}e = [C]4e,d[C]3d,c[C]2c,b[C]2b,a{w}a

(2.15)

The equations have shown other way to obtain the state vector at any point by multipli-
cation of transfer matrices, from endpoint on the left side up to the chosen point, with
the initial state vector in the left endpoint of the beam. The matrix coming from the
multiplication of matrices of all elements is called global transfer matrix [2], [3].
Computer computation is based on two major steps, the first one is to establish the
global transfer matrix of the system. After that boundary conditions are applied to global
matrix, thus initial state vector becomes known. Further it follows another multiplication
along the system according to the (2.14) and (2.15) which permits to print out the state
variables responses of the entire system along the system elements [3].

2.4.3. Loading incorporation

Influence of such external occurrences as springs, lumped masses, concentrated transverse
forces or distributed load along the beam axes is expressed by involving particular solution
of certain differential equation in the following way [2]:

{w}x = [C]0x,0{w}+ {wp}x (2.16)

The second term {wp}x, which denotes particular solution of differential equation in gen-
eral, corresponds to impulse response of the system to change of state variables in solved
field. It is usual to incorporate the loading terms directly in the transfer matrix with the
aim to make the computations more convenient. This is done by defining extended state
vector and extended state matrix through mathematical identity 1 = 1, as it follows [2].


w
θ
M
T
1


x

=


1 x − x2

2EJy
− x3

6EJy
Fw

0 1 − x
EJy

− x2

2EJy
Fθ

0 0 1 x FM

0 0 0 1 FT

0 0 0 0 1

 ·


w
θ
M
T
1


0

(2.17)
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As it has been mentioned above using the shown extension via the last column in extended
matrix helps to add influence of external causing load into computation. Through that
idea can be expressed the effect of the beam’s mass distributed along its axis. Specific
extended form of the matrices describing the beam segments are stated in appendix of
this thesis, Transfer matrices.
Next, it will be explained derivation of the matrices for spring supports and concentrated
transverse force. These two cases have in common the expression of step change of the
state variables in field of the beam body, matrices for these cases are referred also as point
matrices.
Suppose concentrated transverse force at point j of the solved beam body. Consider
infinitesimally short spanning element around the point j. As it illustrates the figure 2.2
below [3].

Figure 2.2: Beam segment at point j [3]

Deflection and slope are continuous across j. Summation of momentum of point j implies
that bending momentum is also continuous. However, equilibrium of the vertical forces
shows the change of shear force between left and right side with the magnitude corre-
sponding to value of the subjecting transverse force F . All of that can be expressed by
equation for specific point j [3]:

w
θ
M
T
1


j

=


w
θ
M
T
1


j

+


0
0
0

−F
1


j

(2.18)

The equilibrium can be written in matrix form, where the matrix is transfer matrix for
step change of transverse force at certain point of the beam [3]:

w
θ
M
T
1


j

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −F
0 0 0 0 1

 ·


w
θ
M
T
1


j

(2.19)
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The idea for derivation of spring support matrix is the same with such distinction, that
the force at point j is given by spring stiffness k and displacement wj at point j. Transfer
matrix formulation for such case is [3].

w
θ
M
T
1


j

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 kwj

0 0 0 0 1

 ·


w
θ
M
T
1


j

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
k 0 0 1 0
0 0 0 0 1

 ·


w
θ
M
T
1


j

(2.20)

Spring support element can be used in the system as model of bearing with specific the
stiffness. The ways to estimate the bearing stiffness will be discussed in another chapter.

2.4.4. Bearing reactions

One of the sought outcomes of the rotor system analysis are bearing reaction forces.
As explained in the previous section, the transverse forces or spring supports cause the
step change of the transverse force state variable. There exists following mathematical
expression of the step change around the spring support:

w
θ
M
Rj

1


b

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
k 0 0 1 0
0 0 0 0 1


b,a

·


w
θ
M
T
1


a

−


w
θ
M
T
1


a

(2.21)

The state vector at point a contains the values of the state variables on the one side of
the spring support, by the multiplication with the spring support transfer matrix it is
obtained the state variables on the other side of the support. By the subtraction of these
two vectors, the vector with the bearing force reaction Rj is obtained.

2.4.5. Boundary conditions

As it has been declared, boundary conditions are necessary to gain the initial state vector.
Here will be given an insight into the process to apply prescribed boundary conditions
into computation. Consider bended beam described in general by transfer formula (2.6)
expressing relation between state vectors at the beginning x = 0 and at the end x = L of
the beam. Further, suppose the global transfer matrix has been already attained [4].

w
θ
M
T
1


L

=


C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C31 C34 C35

C41 C42 C34 C44 C45

C51 C52 C35 C45 C55

 ·


w
θ
M
T
1


0

(2.22)

For bended beam four boundary conditions are required through prescribed values of state
variable in the endpoints of the beam. These values are substituted to corresponding posi-
tions in the initial and the final state vectors of the beam in transfer formula (2.22), [2], [4].

10



For instance, suppose beam founded on spring supports with free end points, correspond-
ing boundary conditions are:

• for x = 0: M(0) = 0; T (0) = 0

• for x = L: M(L) = 0; T (L) = 0

Implementing these conditions to formula (2.22) leads to elimination of columns matching
to positions of zero values in initial state vector and rows matching to unknown values in
the endpoint state vector, last row can be omitted as well[4].

w
θ

M = 0
T = 0

1


L

=


→ → → → →
→ → → → →
C31 C32 → → C35

C41 C42 → → C45

→ → → → →

 ·


w
θ

M = 0
T = 0

1


0

(2.23)

Gained reduced system of equations make solving of remaining initial state variables
possible. Such achieved initial state vector can be used in following computation to print
out the state variables response along the beam structure as it explains the previous
section about the computational algorithm.

2.4.6. Dynamic response

Previous sections have been focused on solving of static problems. However, also dynamic
problems including the inertia of the acceleration of the structural mass effects has to
be taken into account. The responses of the structure in dynamic problems are so-called
natural modes, which are characteristic deformation shapes of the structure body, that
occurs under the action of initial displacement and velocity conditions. Each natural
mode is related to certain natural frequency, therefore, to obtain only one of these two
information is enough to predict the dynamic response of the structure. Relatively logical
approach to get the natural frequency of the beam structure provides transfer matrix
methodology [3].
Suppose bended beam, free motion is governed by the following equation [3]:

∂2

∂x2

(
EI

∂2w

∂x2

)
= −ρ

∂2w

∂t2
(2.24)

Additional governing equation to solve the problem are [3]:

dw

dx
= −θ

dθ

x
=

M

EJ

dM

x
= T

dT

dx
= −ρω2w (2.25)
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The procedure to solve the equations above can be done in the analogous way as the static
problem. For serial segmented beam structures can be composed global transfer matrix
by progressive multiplication of the transfer matrices of each segment of the structure.
These matrices are stated in the appendix of this thesis, Transfer matrices.
Consider bended beam with identical boundary condition as in the static problem above.

• for x = 0: M(0) = 0; T (0) = 0

• for x = L: M(L) = 0; T (L) = 0

Transfer form for the entire system with its global transfer matrix will be obtained, as
it has been explained in the case with the static problem above. In general, it can be
written as follows [4]. 

w
θ
M
T


L

=


U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44

 ·


w
θ
M
T


0

(2.26)

The boundary conditions will be applied, and reduced system of equations will be obtained
[3], [4]: 

w
θ

M = 0
T = 0


L

=


→ → → →
→ → → →
U31 U32 → →
U41 U42 → →

 ·


w
θ

M = 0
T = 0


0

(2.27)

In accordance with the formulas from the appendix (Transfer matrices), the terms of the
matrix depend through the coefficient γ on the angular velocity (rotation) ω. The distinc-
tion compared to the static problem is, the original system of equations is in dimension
4× 4, not 5× 5. This causes the system indeterminate since five variables are unknown:
the state variables and the rotational speed ω [3], [4].
The reduced system of equations is called homogeneous, nontrivial solution of such system
exists if determinant of the system matrix is zero. Because the determinant is a function
of the unknown rotation ω, the value of the determinant can be tracked on dependency
of the rotation ω. The values of ω corresponding to zero determinant are desired natural
frequencies Ω of the solved beam structure [3].

Use of bisection method

Tracking the root of the relation between the angular velocity and the determinant of
the reduced system can be solved numerically, appropriate method for such problems is
bisection method [6].
The method is based on Bolzano’s theorem for continuous functions [5], [6].
If it holds for a function f(x) on certain interval [a, b] that f(a) · f(b) < 0, then there
must exist c ∈ (a, b) for which f(c) = 0, [6].
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The bisection method looks to find an approximation of the root of the function f(x).
The accuracy of the approximation is given by tolerance ε set for the algorithm. The
algorithm as is stated in [5],[6], follows these steps:

1. by tracking the function values with respect to condition in Bolzano’s theorem,
values a and b are chosen

2. interval halving: midpoint c as an arithmetic mean between a and b is estimated

3. function f is evaluated for c

4. if f(c) 6= 0, the sign of f(c) is checked

• if f(c) has the same sign as f(a), b is replaced by c

• if f(c) has the same sign as f(b), a is replaced by c

5. calculation continues again from step 2., new values of a or b are recalculated

The tolerance ε is the absolute value of the difference |c− x| between value of c and the
actual root x. For the convergence within an absolute error tolerance ε it is needed to
meet the condition [5], [6]:

|c− x| ≤ ε (2.28)
The iterative loop for certain interval [a, b] lasts until the recalculated values of an and bn
in nth iteration meet the condition [6]:

bn − an
2

= ε = |cn − x| (2.29)

Hence, the value of cn, given as an arithmetic mean of the an and bn, can be considered
as an approximation of the root x of the tracked function within the certain tolerance
ε [5], [6].
The application of the bisection method in the calculations of the natural modes in rotor
shaft analysis is as it follows:

• the range of the rotation speed of the solved shaft is given

• interval step of the rage is given

• determinant of the reduced transfer matrix (2.27) is tracked depending on the given
rotation speed range, in accordance with the algorithm stated above

Numerical tracking of the determinant is not giving continuous waveform of the function
values. Therefore, the bisection, especially the evaluation of the c value, is done through
a linear approximation of the bounds an and bn in current nth iteration of the interval
halving.
Since the bisection method is linear convergence rate, with the constant m = 1

2
, it needs

at least k iterations to get 2−k tolerance. In practical engineering tasks the usual tolerance
ε is two orders smaller than the given interval step. Therefore, seven steps of halving for
one initial intervals are processed, since 2−7 = 1

128
and 1

128
< 1

100
[7].
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3. Magnetic pull
This chapter is focused on brief explanation of magnetic pull, what does it mean, where
does it arise from and what is an optimal method to model this phenomenon in electric
machines.
Rotor electric machines are composed from two basic parts, rotor, and stator. Between
these parts, there is an air gap in which magnetic field operates and consequently induces
electromagnetic forces. These forces should ideally cancel out. However, thickness of the
air gap is not constant along the rotor and stator due eccentricity caused by factors like
manufacturing imperfections resulting in deviations from ideal cylindrical shape of con-
sidered parts. This leads to force interaction between rotor and stator called unbalanced
magnetic pull (UMP). This phenomenon is unavoidable in electric machines, therefore it
is needed to be taken into account in rotor system modelling. The UMP acts in radial
and tangential direction, but the radial component effect is usually larger, therefore the
UMP is modelled as loading in radial direction of the rotor shaft [8].

3.1. Eccentricity model

The figure below shows concepts of considered mutual rotor and stator eccentricity. Two
coordinate system are deemed, for stator (x1 − y1) and rotor (x2 − y2). Static eccentric-
ity est and direction angle θst are defined from transition between these two coordinate
systems. Dynamic eccentricity edy and direction angle θdy are defined in rotor reference
coordinate system derived from rotor whirling motion. Then mixed eccentricity can be
defined [9], [10]:

emix (t) =

√
(estcosθst + edy (t) cos (θdy (t)))

2 + (estsinθst + edy (t) sin (θdy (t)))
2 (3.1)

The reason, to observe the eccentricity in time dependency, is to express the air gap in
the following computations [10].

Figure 3.1: Rotor eccentricity scheme [11]
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3.2. Force and stiffness model

The force of unbalanced magnetic pull can be computed by integration of Maxwell stress
tensor in the air gap between rotor and stator. Therefore, it requires to estimate magnetic
flux density distribution in the air gap. This can be obtained in terms of air-gap permeance
harmonics and surface magnetomotive force harmonics as it follows [9], [10].

Bδ (α, t) = mu0
F (α, t)

δ (α, t)
= Λ (α, t)F (α, t) (3.2)

Here, α denotes location of interested air gap on rotor surface, δ (α, t) means the air gap,
Λ (α, t) denotes air-gap permeance and F (α, t) means total magnetomotive force. The
UMP forces can be finally calculated as it follows [10].

Fx =

∫ 2π

0

Bδ (α, t)

2µ0

· r · lst · cos(α)dα

Fy =

∫ 2π

0

Bδ (α, t)

2µ0

· r · lst · sin(α)dα
(3.3)

Here r is air gap radius and lst is length of the stator stack.
Obtained UMP force can be used to define magnetic pull stiffness linearized around the
static eccentricity (xst, yst) as it follows [9], [10].

Cm,,x ≈
[
dFx

dx

]
x=xst

Cm,y ≈
[
dFy

dy

]
y=yst

(3.4)

3.3. Simplification assumptions

The analytical model above has, however, limitations related to the accuracy. The model
is established within following simplifications [9]:

• No effect of variation in slip, slot opening, magnetic saturation and flux leakages
considered [9]

• Value of mixed eccentricity is static at instantaneous time [9]

Therefore, to overcome mentioned limitations, the usual process is to realize more detailed
finite element analysis simulations of the specific magnetic field to achieve results of the
mentioned variables with aim to estimate causing forces and eccentricity values for UMP
stiffness as precise as possible regarding the specific circumstances [10].
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3.4. Transfer matrix model

From above stated the model of magnetic pull stated above, resulting in stiffness esti-
mation, that magnetic pull can be taken into account also in numerical model of rotor
shafts based on transfer matrix method. The appropriate element type seems to be spring
support, however, there are few differences related to the element considered as the one
with the magnetic pull effect [4].
First, the stiffness deemed as the magnetic pull is included with negative sign. Briefly,
the larger the eccentricity is, the bigger the air gap is, consequently the arising magnetic
forces are weaker. That is opposite compared to common mechanical spring model, where
the arising force in the spring is growing proportionally with the spring deflection.
Second, it is inappropriate to deem the element with magnetic pull as zero length element.
Thus, the approach in such cases is to divide the magnetic pull element into separate shaft
type elements and spring support elements with negative value of stiffness in the transfer
matrix [4]. However, more appropriate is to discretise the element into more than just
two shaft elements with one spring between. The element with the length L is usually
divided internal in the transfer matrix algorithm into n elements with L/n length and
n− 1 springs are placed between the elements with stiffness Cm/n− 1.
Exact form of the transfer matrices for magnetic pull elements are stated in the appendix
Transfer matrices.

Figure 3.2: Magnetic pull element division scheme
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4. Rolling-Element Bearings
This chapter considers rolling-element bearings and briefly introduces common types of
rolling-element bearing.

4.1. Bearing types

There can be considered two basic types of rolling-element bearings, ball bearing and
roller bearing. The stated bearing types differs from each other based on the shape of the
contact area, the ball bearing has an elliptical contact area, whereas the roller bearing
has a rectangular shape of the contact area. The figure 4.1 shows the descriptive pictures
of specific bearing types.

(a) (b)

(c) (d)
Figure 4.1: Description of the most common rolling-element bearing types [13],

(a) Ball bearing, (b) Cylindrical roller bearing, (c) Tapered roller bearing, (d) Thrust
ball bearing

As it illustrated the figure 4.1, rolling-element bearings are assembled from several parts:
an inner race, an outer race, a set of balls, or rollers, and cage, or separators. The
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cage and separators maintain even spacing between the rolling elements. Full-complement
bearings are cage-less, and the annulus in packed with the maximum number of rolling
elements. Such type of bearing disposes higher load carrying capacity but lower speed
limits compared to cage equipped bearings. Tapered-roller bearings are an assembly
of a cup, a cone, a set of tapered roller, and a cage [12].

4.1.1. Ball Bearings

The ball bearings are used in greater quantity than any other types of rolling-element.
Such type is suitable in application with primarily radial load and some thrust load
present. The ability to carry the thrust load can be expressed by the parameter called
contact angle [12].
Contact angle
The figure 9.4 of the ball bearing cross section depicts the meaning of the contact angle. It
is defined as the angle made by line thought the points where the ball element touches both
inner, and outer raceways and a plane perpendicular to the bearing axis of rotation [12].
The figure implies, the higher contact angle is, the higher is the capacity of the bearing
to carry the thrust load.

(a) (b)
Figure 4.2: Illustration of the bearing contact angle [12], (a) Unloaded ball

bearing cross section, (b) Loaded ball bearing cross section with the contact angle

Deep-groove ball bearing is the essential type of ball bearing. This kind of ball bear-
ing is not recommended for applications with thrust load, since the contact angle varies
from 0° to approximately 5°, because of the radial clearance and an axial play between
the raceways and the rollers [12]. As it shows the figure 4.2.
Angular-contact ball bearings are designed to carry a heavy thrust load in one direc-
tion. It has a two-shouldered ball groove in one raceway and single-shouldered ball groove
in the other raceway, as it depicts the figure 4.3. The typical values of the contact angle
vary from 15°up to 40° [12]. The angular contact ball bearings are usually mounted in
duplex pairs either back-to-back, or face-to-face position. Such case requires the preload
so that both bearings are clamped together. The preloaded bearings provides stiffer shaft
support and prevent the bearings from skidding at light loads [12].
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Figure 4.3: Angular-contact ball bearing, cross section detail [12]

Self-aligning bearings have an outer race, or inner race ball path in spherical shape,
so that it accepts some levels of misalignment [12].
Thrust ball bearings have the contact angle 90°, therefore they are applicable exclu-
sively for machinery with vertically oriented shafts [12].

4.1.2. Roller Bearings

Roller bearings are employed for higher loads than can be accommodated with ball bear-
ing. There can be also defined the contact angle in analogous way as for the ball bearings,
as it shows the figure 4.4 below [12].
Cylindrical roller bearings provide purely radial load support (since the contact angle
is zero) with high carrying-load capacity and as well as high speed capability, exceeding
spherical, or tapered roller bearings [12].
Spherical roller bearings are made either single, or double row design. They combine
extremely high radial load capacity with modest thrust-load carrying capacity and have
an excellent tolerance to misalignment [12].
Tapered roller bearings use rollers in the shape of truncated cones. The radial load
capacity is comparable to that of a cylindrical roller bearing with the same size. The
contact angle is in range from 10° to 16°, but also steeper contact angle of 30° can be used
to increase the thrust load capacity. However, the tapered-roller bearing cannot accept
pure radial load and since the assembly is separable, they are usually mounted in pairs,
like the angular-contact ball bearing, to improve ability to transfer bidirectional axial
load [12], [13].

Figure 4.4: Cross section scheme of tapered roller bearing with marked contact angle [12]
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5. Bearing stiffness
Numerical modelling of bearing is getting more complex nowadays, computations are often
made through advanced analysis tools like FEM simulation etc. Such approaches help to
develop the knowledge about the problematic of the roller-element bearings. However,
there is still need to have useful analytical methods, which can be easily applied by
designers in practical task in machine designing. This chapter gives an insight to available
approach to estimate a contact stiffness of rolling elements with the ring raceways based
on the the bearing geometry [12].

5.1. Hertz’s contact

The idea to estimate the contact stiffness arises from general load deflection relation-
ship [12]:

wz = Kjδ
j (5.1)

Here, Kj means bearing rolling element contact stiffness, δ means displacement under the
causing load in the contact point of the bearing rolling elements. There are two significant
types of contact conjunction in the bearings, elliptical for ball bearing or rectangular for
roller bearing. These two cases are distinguished via value of j, for ball bearing it is
j = 3/2, for roller bearing it is j = 1 [12]. The stiffness Kj for certain contact type can be
determined from the bearing geometry, based on the Hertz’s elastic contact theory, which
will be, for both cases, described in following sections. The method is adopted from the
publication [12]. For Hertz’s contact theory following factors have to be assumed [14]:

1. The contact body is an isotropic linear elastic material, which obeys Hooke’s law
and is in a small deformation state.

2. Te length a of the contact area is much smaller than the radius R of curvature of
the surface of the object, that is, a << R.

3. Te contact surface is smooth and continuous, and there is no friction.
4. Since a << R, every object can be regarded as an elastic half space.

5.1.1. Elliptical contacts

Formula for ball bearing contact stiffness is:

K1.5 = πkeE
′
(
2ER
9F

)1/3

(5.2)

Used notation means:

• ke ellipticity parameter

• E ′ effective module of elasticity

• R curvature sum

• E ,F elliptic integrals
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Ball bearing geometry

Figure 5.1 depicts cross section of ball bearing geometry. These bearing dimensions are
marked: Outer bearing diameter da, inner bearing diameter db, bearing width bw.

Figure 5.1: Cross section of single row ball bearing [12]

For the rolling element contact analysis are important following dimensions: outer raceway
diameter do, inner raceway diameter di and ball diameter d. These parameters can be
found and measured from bearing CAD models available in the online catalogues. The
practical way of this process will be presented further in the text. Another necessary
parameter can be determined by the following relations:
Pitch diameter de:

de =
do + di

2
(5.3)

Diametral clearance cd (marked in the figure 4.2) is thought as the maximum distance
that one raceway can move in diametral direction with respects to the other, when small
load is applied [12]:

cd = do − di − 2d (5.4)

Race conformity Rr is a measure of the geometrical conformity of the race and the ball
in plane passing through the bearing axis [12]. It is defined as the ratio of the raceway
radius and rolling element diameter. For the ideal case, the race raceway radius is equal
to the ball radius, thus Rr would be 1/2. However the closer the race conforms to the
ball, the greater is the frictional heat within the contact. The modern bearings usually
have 0.51 < Rr < 0.54 . The race conformity ratio for the outer raceway is said to be
slightly larger compared to inner raceway, with the aim to compensate the contact stresses
at inner and outer raceway [12]. In the computations of thesis, the following values are
considered, adopted from [15]:

• Rro =
ro
d
= 0.53 for outer-ring raceway

• Rri =
ri
d
= 0.52 for inner-ring raceway
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Radius curvature for ball-inner-race contact:

Rxi =
d (de − dcosβ)

2de

Ryi =
Rrid

2Rri − 1

(5.5)

Radius curvature for ball-outer-race contact:

Rxo =
d (de + dcosβ)

2de

Ryo =
Rrod

2Rro − 1

(5.6)

From radius curvature values of radius ratio αr can be obtained, for inner-ring raceway:

αri =
Ryi

Rxi

(5.7)

In analogous way for outer-ring raceway:

αro =
Ryo

Rxo

(5.8)

Value of the radius ratio determines calculation of the elliptic integrals F and E according
to the following table 5.1:

Table 5.1: Simplified elliptic integrals contact equations [12]
Radius ratio range

Property 1 ≤ αr ≤ 100 0.01 ≤ αr ≤ 1

Geometry

Ellipticity ratio ke = α
2/π
r ke = α

2/π
r

Elliptic integrals F = π
2
+
(
π
2
− 1

)
lnαr F = π

2
−

(
π
2
− 1

)
lnαr

E = 1 + π−2
2αr

E = 1 +
(
π
2
− 1

)
αr

Of course, the variables ellipticity parameter ke and consequently elliptic integrals F , E ,
stated in the table above, are needed to be distinguished for inner and outer raceway.
Final formula for curvature sum R is for inner-ring raceway:

1

Ri

=
1

Rxi

+
1

Ryi

(5.9)
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In the same way for outer-ring raceway:
1

Ro

=
1

Rxo

+
1

Ryo

(5.10)

The estimated ellipticity parameter ke, curvature sum R and elliptic integrals E ,F can
be finally used to calculate the elliptical contact stiffness.

5.1.2. Rectangular contact

Formulas for roller bearing contact stiffness is:

K1 =
π
2
E ′l

2ln
(
4Rx

b∗

)
− 1

(5.11)

Used notation means:

• E
′ effective module of elasticity

• l length of the rolling element

• Rx radius curvature

• b∗ contact semiwidth

Radius curvature for cylinder rolling elements can be calculated by formula:
1

Rx

=
1

ra,x
+

1

rb,x
(5.12)

Where rax denotes radius of rolling element and rbx denotes radius of the bearing raceway,
that value is distinguished for inner and outer raceway, consequently radius curvature Rx

is distinguished in the same way, as it shows the figure below.

Figure 5.2: Designations for radii of curvature for rolling bearing races [12]

Contact semiwidth is given by formula:

b∗ = Rx

(
8W ′

π

)1/2

(5.13)

Here, W ′ is dimensionless load defined via normal load per unit w′:

W ′ =
w′

E ′Rx

(5.14)
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Formula (5.14) above implies that for bearings with rectangular contact type,the radial
load is necessary to be known as an input. This fact makes the stiffness estimation for the
rectangular contact bearing more complicated, compared to the ball contact bearings.

5.1.3. Material properties

Last variable needed for contact stiffness estimation, for both cases of contact types, is
effective elastic modulus, which is defined by material properties of conjugated rings and
rolling elements.

E ′ =
2

1−µ2
a

Ea
+

1−µ2
b

Eb

(5.15)

Where E and µ means Young’s modulus and Poisson’s ratio, subscripts a, b are assigned
to rolling element and bear ring, respectively.

5.1.4. Stiffness estimation

The stiffness of rolling bearing can be determined from contact analysis explained above
together with following assumptions of loading distribution in bearing. Mostly, bearing
applications involve steady-state rotation of either the inner or outer race. Furthermore,
rotational speeds are usually not so high so effect as centrifugal forces or gyroscopic
moments can be neglected [12].
At first, it requires to get rolling element stiffness Kj. Furthermore, the total radial
deflection δm is given by deflection of inner and outer ring [12]:

δm = δmo + δmi (5.16)

Here, for δmo, and δmi it holds:

δmo =

(
wz

(Kj)o

)1/j

δmi =

(
wz

(Kj)i

)1/j

(5.17)

Finally, by substituting of the equations (5.16) and (5.17) into equation (5.1) it is obtained
stiffness of bearing rolling element conjunction with the inner and outer rings expressed
by formula [12].

Kj =
1

{
[
(Kj)o

]1/j
+
[
(Kj)i

]1/j}j (5.18)

The value of j distinguish, if the stiffness is related to the elliptical, or rectangular con-
junction shape.
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5.2. Preloaded bearing

As have been mentioned in the review about bearing types (chapter Rolling-Element
Bearings), the angular contact ball bearings are usually mounted in pairs to be able carry
the thrust load. Here, it will be given a simple approach to determine the radial stiffness
of the preloaded angular contact bearing. The two angular bearings are usually preloaded
by mounting with rigid preload P . The figure 5.3 shows the paired bearing subjected to
axial load A [16].

Figure 5.3: Preloaded paired bearing [16]

The mechanical equilibrium for the depicted axial bearing forces Fa1 and Fa2 is:

A = Fa1 − Fa2 (5.19)

The preloaded state is special case described by equilibrium:

Fa1 = Fa2 = P (5.20)

The initial axial deflections δa1 and δa2 of the paired bearings satisfy the relation for
relative approach of the rings under the preload [16]:

δa1 + δa2 = e (5.21)

The equations stated above can be illustrated by preload deflection curve stated in the
figure 5.4. The graph shows that value of P corresponds with the intersection of two
opposite curves when equation (5.20) holds.
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Figure 5.4: Deflection curve for paired bearing [16]

In accordance with the analysis stated in [16], relation for preload P holds:

P = Z ·Kj · sin5/2(β) · (e/2)3/2 (5.22)

Finally, it can be estimated, according to the paper in [16], that the axial stiffness ka and
the radial stiffness kr of the paired bearing is:

ka = 3 · (Z ·Kj)
2/3 sin5/3(β) · P 1/3 (5.23)

kr =
ka

tan2(β)
(5.24)

The aim of the calculations stated in this chapter is to show how the bearing stiffness can
be determined for the machine designer as simply as possible. The only parameters needed
for the input are outer raceway diameter do, inner raceway diameter di, ball diameter d,
and the number of rolling elements Z which are accessible from bearing catalogues, and
the CAD geometry. There have been developed several other approaches to estimate
the bearing stiffness, which are usually based on experimental analysis. Their potential
use with the results comparison will be discussed in later chapter chapter Application,
dedicated to practical rotor analysis.
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6. Power losses
This chapter covers phenomenon of friction heat generated in shaft bearings. There exist
various sources of frictional resistance. The most predominating cases will be discussed,
with the mathematical approach to describe them.
Quantitative evaluation of the total power dissipated in bearing can be expressed by
formula [13]:

Pdis = M · 2π
n

(6.1)

Where, n denotes operational speed of the bearing in revolution per minute, M gath-
ers total frictional momentum arising from bearing component contacts and lubricant
interaction. In detail the frictional momentum can be expanded as follows [13]:

M = MP +ML +MS (6.2)

The terms in equation above express the load dependent momentum MP , lubricant viscous
friction momentumML, and sealing friction momentumMS [13].

6.1. Loading friction

Loading contact friction consists of two major contributing factors: rolling and sliding.
First one, rolling, is caused by elastic hysteresis. When roller and raceway materials just
ahead of the contact in the circumferential direction undergo distortion and compression,
while, material just behind the contact is relieved of stress. Second factor, sliding, is a
microslip which occurs in the rolling direction as a result of roller depression and raceway
stretch. The deformation causes the roller goes forward slightly less than its circumference
in one revolution [13].
The total frictional momentum can be evaluated within sufficient accuracy as a load and
geometry dependent using a constant coefficient of friction [13]:

MP = 0.5 · µ · db · P (6.3)

Used notation means:

• MP bearing frictional momentum

• µ coefficient of the friction for the bearing

• P equivalent static load

• db bearing bore diameter

The equivalent static load P can be estimated based on axial Fa and radial Fr bearing
reactions in accordance with the procedure stated in [17] with the following relations:

P

Fr

= 1 for Fa

Fr

≤ e

P

Fr

= X + Y
Fa

Fr

for Fa

Fr

≥ e

(6.4)
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As radial load Fr is considered obtained bearing reaction from static analysis computation,
axial load Fa can be obtained from additional computations, not directly from bended
beam static analysis. Coefficients X and Y denote radial load and axial load factors.
The values of these coefficients together with the value for limit value e can be found in
bearing catalogue. Another required input is static load rate C0 and mutual position of
the shaft bearings. Possible cases of the bearings’ position are: single or paired in tandem,
especially for angular contact ball bearings plays role, if they are set up to each other in
opposite position in ”X”, or ”O” [17].
This case of friction predominates in cases with slow rotation and heavy loads [13].

6.2. Lubricant friction

Lubricant friction arises from interaction of roller and viscous shearing on rolling element,
cage and raceway surfaces and churning on lubricant dispersed in bearing cavity [13].
The lubricant friction momentum can be expressed as follows [13]:

ML = 10−7 · fL · (ν · n)2/3 · d3m for ν · n > 2000

ML = 160 · 10−7 · fL · d3m for ν · n < 2000
(6.5)

Used notation means:

• ML momentum representing lubricant losses

• ν lubricant kinematic viscosity

• n bearing speed

• fL factor depending on bearing type and method of lubrication

This case of friction is typical for applications with high speeds and light loads.

6.3. Sealing friction

Sliding motion in contact of the cage and rollers, or sliding between the end of rollers and
seal can appear in bearing. In such cases for the sealing friction momentum the empirical
equation holds [13]:

MS =

(
db +D

f1

)2

+ f2 (6.6)

Used notation means:

• MS friction momentum of two seals

• db, D bearing bore diameter, outside diameter

• f1, f2 friction factors for bearing seals, dependent on bearing design
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This case of friction loss is worth to be considered when inadequate lubricant is used the
kinematic viscosity is high, or the operating temperatures are low [13].
Values of the bearing coefficients, in the formulas above, are stated in the appendix
Frictional coefficients.
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7. Software interface
As the objectives of this thesis set, one of the points of the assignment is to develop a simple
software to analyze the rotor system. The devised software is required to include the whole
theory summarised in the previous chapters. This chapter will give a review into software
developing tools that can be considered to built up a graphical user interface (GUI).

7.1. MATLAB

MATLAB is a popular tool for scripting and computations in scientific and engineering
applications. The language is math oriented, which makes it useful for engineering com-
putations based especially on matrix calculus. Another worthy advantage of MATLAB is,
that it provided several specialized toolboxes (GUI based applications) , which make the
scientific computing for the users even more convenient. The toolboxes and the script-
ing language are professionally developed, rigorously tested and documented for scientific
usage, which are the reasons, it has to be paid for a use of this software.
Since 2015, MATLAB has released a new environment called App Designer, through which
the user can develop a specific interface based on his own preferences and purposes. The
advantages of the MATLAB GUI build up environment are following: relatively easy to
learn, develop and set up the apps even for users less experienced with GUI designing.

7.2. Python

Python can be an open source alternative to MATLAB. However, since Python is more
general purpose programming language, it demands intermediate programming skills of
the user. Compared to the MATLAB toolboxes testing, user can rely on community
developed function packages and libraries available on web forums. On the other hand,
since the Python is open source, there is no official guaranty of the language usage for
certain purposes like it is for MATLAB. In terms of application development, there exists
PyQt5 Designer, which is solid environment to build up a custom app, similar to MATLAB
App Designer. However, it is suitable rather for basic apps, than more visual wise complex
applications.

7.3. C++

C++ is general purpose, object oriented programming language that scales up huge range
of applications like software, websites, or algorithm developing. The syntax is much
more complex, compared to MATLAB or Python, which requires higher level of software
knowledge and programming skills of the user. If the goal is to develop tools for certain
data analysis or model building, of course it can be done in C++, but process can be much
more harder and time consuming for users less experienced with software development.
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8. Rotor shaft solver
Based on the review above, it was decided to use MATLAB App Designer environment to
build up a software solver for rotor analysis. The figure 8.1 shows the layout structure of
the developed application divided into two major parts. Upper part contains a tab group
panel with three tabs: Input, Shaft Results, and Bearing Results. In the lower part, there
are situated two panels called Shaft and Control, to visualize the solved rotor and control
the opened project.

Figure 8.1: Solver layout, with filled example

The following section explains shortly the idea of the user work-flow of the developed
program. Three basic parts of the work-flow can be considered, rotor parameters definition
and possible outcomes, detailed bearing results analysis, and project data save.
The following picture illustrates the basic idea of the program work-flow.

Figure 8.2: Scheme of the rotor definition and obtained results

According to the scheme 8.2, an input of the rotor parameters is required at the beginning.
There are two options, first is to define the array of specific element types, second is to load
rotor defining parameters saved from the previous use of the program. With the buttons
Add Element or Delete Element is possible to edit the sequence of the rotor elements. Of
course the, element array loaded from a saved file can be edited. Bearing element has
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specific input parameters requirements to estimate the bearing contact stiffness located
in the panel Bearing Parameters. User can save, or load the bearing parameters via the
separate file, dedicated to specify bearing input parameters.
After the elements array is defined, the material properties of the rotor have to be defined:
material density, and Young modulus. Material density input plays an important role in
the calculation, it determines what can be gained as an outcome of the analysis.
If the material density is not specified in accordance with the transfer matrix formulas
(appendix Transfer matrices), the shaft mass load distribution is neglected and only the
deflection shape function and bearing reactions can be obtained. Only if the density has
been specified, the critical speed analysis is possible as an outcome.
To take into account the phenomenon of the mass load distribution except for material
density also gravity influence has to be considered in the calculation. As the scheme 8.2
shows, if the density is not included in the analysis, the resulting deflection shape function
does not reflect the shaft mass distribution, however the influence of the gravitational force
of the beared masses can be included in the calculation. If both, the material density and
gravity acceleration, are included in the analysis inputs, the resulting deflection shape
function reflects the shaft mass distribution along the rotor axes.
For the critical speed estimation the gravity influence is not relevant input parameter.
To decide if the mass load distribution should be considered in the computation, it de-
termines how the rotor is oriented in reality. If the rotor is mounted horizontally, it is
appropriate to consider the mass distribution influence. If the rotor is vertically oriented,
the mass distribution is not relevant for the analysis of the transverse bended beam body.
The chain in the scheme 8.3 illustrates the procedure of the bearing power loss analysis.
Since the bearing reaction forces have been estimated, the results can be used to compute
the induced heat in the chosen bearing according to the theory stated in the chapter
Power losses. User can decide if the cases lubricant, or sealing friction should be taken
into account in the heat loss analysis.

Figure 8.3: Scheme of the bearing results analysis

The last chain, figure 8.4, illustrates that in the current project opened in the program
there can be saved several specific files, which can be useful for further analysis, or obtained
result processing, or analysis repetition. The input parameters for the computation can
be saved into file with MATLAB suffix .mat. There are three options. User can decide to
save the rotor definition into file named Shaft_Data.mat, another option is to save inputs
to store bearing contact stiffness inputs into the file Bear_Param.mat, or to save the
parameters for the heat analysis for the selected bearing into the file Heat_Param.mat.
For the results, there is an option to store computed deflection, and critical speed curves
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into .txt files. The bearing results gathered in the final table, situated in the panel Bearing
Results, can be exported into Excel .xlsx file.

Figure 8.4: Scheme of the data save

The description above gives only a brief insight into the program work-flow, the following
sections explain the structure of the program components in more detail. The components
can be distributed into the following categories, based on the purpose to be used for. The
categories are: input parameters components, results and visualizing components, and
project control buttons.

8.1. Input parameters

The tab group Input serves to define the initial properties of the solved rotor. The follow-
ing panels have to be used: Element Selection, Element Parameters, Bearing Parameters,
Boundary Conditions, Speed Range, and Material.

8.1.1. Elements definition

In the panel Element selection, there is a drop down menu, containing a list of possible
rotor element types. The following table 8.1 contains the element types with the relevant
input parameters. The list is in accordance with elements list stated in the appendix
Transfer matrices. Buttons Add Element and Delete Element serve to control the elements
sequence definition. Already defined elements are shown in the panel Shaft.
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Table 8.1: List of the element types with required parameters

Element type Picture Parameters Unit

Shaft element Diameter
Length

[mm]
[mm]

Element
with added mass

Diameter
Length
Mass

[mm]
[mm]
[kg]

Magnetic pull
Diameter
Length
Magnetic pull stiffness

[mm]
[mm]
[N/m]

Magnetic pull
and added mass

Diameter
Length
Mass
Magnetic pull stiffness

[mm]
[mm]
[kg]

[N/m]

Disc
Mass
Moment of inertia
Angular velocity

[kg]
[kg · m2]

[rpm]

Bearing Stiffness estimated in panel
Bearing parameters [N/m]

Spring Support Spring stiffness [N/m]

Force Transverse force [N]
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8.1.2. Bearing parameters

This panel, shown in the figure 8.5, serves to estimate the bearing element contact stiffness
in accordance with the process stated in chapter Bearing stiffness. The elements become
active when the option Bearing from the element drop down menu Element Type is chosen.

Figure 8.5: Panel with for bearing stiffness estimation

After that can be chosen the Bearing Type, Ball Bearing, Roller Bearing or Preloaded
Paired Bearing. In accordance with the selected bearing type corresponding input fields
become active to use, as shows the following table.

Table 8.2: Bearing type input parameters
Inputs requested for Parameter Mark Unit

Ball bearing
and roller bearing

Outer-race diameter do [mm]
Inner-race diameter di [mm]
Element diameter d [mm]
Contact angle β [°]

Roller bearing Radial load w [N]
Element length l [mm]

Prelaoded pair bearing Number of rolling elements Z [-]
Preload P [N]

When the proper parameters for the chosen bearing type are filled in, the Result Stiffness
of the bearing can be calculated. After that the bearing element with estimated stiffness
can be added into the rotor elements array using the button Add Element as done for the
others element types.
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8.1.3. Material and Speed Range

In the panel Material Young modulus and shaft material density is defined. Moreover,
user can decide via the check box Gravity, if the effect of the mass distributed along the
shaft axis and causing gravity forces should be considered in the computation, as has been
explained in the previous section.
Under the panel Speed Range user can define the range of the operational speed to estimate
the critical speed of the rotor, according to the process explained in the chapter Beam
computations, section Dynamic response. Requested inputs for the interval are: Lower
bound, Upper bound and Step.

Figure 8.6: Detail of the panel Speed Range and Material

8.1.4. Boundary conditions

The panel named Boundary Conditions contains buttons for choosing appropriate bound-
ary conditions for the transfer matrix algorithm.The most common cases of the mounting
state of the rotor considered are grouped in the following table.

Table 8.3: Possible boundary conditions
Condition Scheme

Loose - Loose

Fixed - Loose

Support - Support
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8.2. Shaft visualize

The panel Shaft serves to visualize simply the scheme of the rotor according to the el-
ements’ selection. Above the elements’ schematic pictures, there are stated labels with
element specific parameters.

Figure 8.7: Visualized shaft scheme

8.3. Shaft Results

This tab panel contains a graph to plot deflection curve, and numeric field containing the
maximal deflection, which is also highlighted in the deflection graph. That outcome can
be obtained as a callback of the push button Deflection.

Figure 8.8: Shaft result panel

As a callback to the Critical Speed push button can be obtained at most first three values
of the critical speed, printed in three numeric fields under the graph. In the graph user
can observe the determinant in dependency on the given speed range to look if more than
three critical speeds in the range can occur.

8.4. Bearing Results

In the tab panel Bearing Results is situated a table containing following columns Select,
Reaction, Deflection, Stiffness, and Power loss. The order of the bearing numbering is
meant from left end of the shaft up to the right end. The force reactions are obtained
from the deflection computation.
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Figure 8.9: The panel gathering the bearing results

The power loss generated in the certain bearing can be be estimated in panel Power loss
situated below the table. The chosen bearing can be picked up in the table, and as the
radial load will be taken resulting radial bearing reaction, stated in the table. After that,
following inputs for the resulting frictional momentum are necessary to be filled in:

Table 8.4: Load friction inputs
Parameter Mark Unit
Radial load Fr [N]
Axial load Fa [N]
Bore diameter db [mm]
Friction constant µ [-]
Operating revolution n [rpm]
Static load rating C [N]
Radial load factor X [-]
Axial load factor Y [-]
Limiting value e [-]
Position [-]

If the influence of the bearing lubricant is to be considered in the analysis, there is a
checkbox called Lubrication. If the checkbox is checked off, the following inputs fields will
be activated:

Table 8.5: Lubrication friction inputs
Parameter Mark Unit
Kinematic viscosity ν [mm2/s]
Lubrication factor fl [-]
Pitch diameter de [mm]

If the influence of the bearing sealing is to be considered in the analysis, there is another
checkbox called Sealing. If the checkbox is checked off , the following inputs fields will be
activated:
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Table 8.6: Sealing friction inputs
Parameter Mark Unit
First sealing factor f1 [-]
Second sealing factor f2 [-]
Outer diameter D [mm]

The parameters can be saved into Heat_Param.mat, if they have been filled in, via the
button Save Heat. Of course, they can be also uploaded from the previous computations
via the button Load Heat.
As the heat loss has been computed, as a callback to the Calculate push button, the value
is assigned to the last column in the row for the selected bearing. Furthermore, the table
gathering the bearing results can be exported to .xlsx file via push button Save Table, as
the figure 8.9 depicts.

8.5. Project control

The last panel named Control includes push buttons that allows the calculations and
project data control. There are also some other push buttons in the program to control
some computations or data parameters control. That all will be described in the following
paragraphs.

8.5.1. Computation

The two buttons Deflection and Critical speed serves to obtain a deflection curve with
the bearing force reactions, and critical speeds, respectively. The response will appear
in the tab Shaft Results (defection curve and critical speed curve and values) and in the
panel Bearing Results (the bearing reaction forces). As has been explained in the previous
sections.
To obtain the correct deflection results the following parameters have to be filled in
properly:

• Element selection and relevant parameters definition, especially for the bearing stiff-
ness estimation

• Boundary conditions with correctly chosen option

• Material properties, where Young modulus is always necessary, density with gravity
are optional (as explained in the introduction of this chapter)

To obtain the correct critical speed results the following parameters have to be filled in
properly:

• Element selection and relevant parameters definition, especially for the bearing stiff-
ness estimation

• Boundary conditions with correctly chosen option
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• Material properties, where Young modulus is always necessary, density for critical
speed analysis is also necessary, gravity influence is not relevant

• Speed range, where range bounds with the interval step need to be filled in

Another calculation push button is situated in the panel Bearing parameters, when the
bearing contact stiffness in obtained as a callback. To get the Result Stiffness all active
numeric fields need to be filled in, for chosen bearing type.
There is also calculation push button situated in the tab Bearing results, panel Power
loss, which serves to estimate the power loss for bearing selected in the table .

8.5.2. Data save

It is possible for the user to save the current project via push button Save Shaft. As
a response, the dialogue box will appear to save the project data file. By default the
file name is set as Shaft_Data.mat. The structure of the created file is illustrated in the
following figure.

Figure 8.10: Data structure of the rotor definition saved file

The notation used in the figure above has the following meaning: parameter ne means
number of the rotor elements in the project, parameter MatShaft includes values of
Young modulus and material density. Parameter omg is used to save data about speed
range definition, if the check box Estimate critical speed is filled, the first value of the
variable omg is 1, the others are parameters of the speed range. If the check box is
not filled, the first value is 0 and the other values are 0 as well. The fourth array of
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variables in the figure 8.10 contains data about elements’ parameters, the meaning is:

• de element diameter

• le element length

• me element added mass

• av angular velocity

• ss saved spring support, or bearing stiffness

• cm magnetic pull stiffness

• mi moment of inertia

• fe value of the transverse force

• et element type

• ed label of element description

• bp bearing, or spring support position index

• img element schematic picture

The remaining parameters bc and gr include the information about selected boundary
conditions, and gravity check box.
Naturally, if the user had saved the project data sometimes before, there is an option
to load the saved data file to continue or correct some previous analysis. This can be
done via push button Load Shaft. As a response the saved rotor will appear visualized in
the Shaft panel with corresponding labels. Also boundary conditions, material properties
specifications eventually speed range definition values will correctly fill in.
Another save and load push buttons control are available in the panel Bearing parameters.
The user can save entered bearing parameters, with corresponding selected bearing type,
for eventual upcoming calculations. The file name for bearing save is by default set as
Bear_Param.mat. The structure is show in the figure below.

Figure 8.11: Data structure of the bearing definiton saved file

The meaning of the structure, in the figure 8.11, is following. Variable BearType contains
the label of the selected bearing type from the drop down menu: Ball Bearing, Roller
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Bearing, and Paired Preloaded. Variable MatBear includes material properties of the
rolling elements and bearing ring raceways. The first and second values relate to Young
modulus of the rolling elements, and the rings, respectively. The third and fourth values of
this variable relate to the Poisson ratios of the rolling elements, and the rings, respectively.
Variable geom consists of geometry parameters of the bearing. The content of this
variable depend on the selected bearing, as it is depicted in the third block in the figure
8.11. The parameters in the first row mean:

• do Outer-ring raceway diameter

• di Inner-ring raceway diameter

• d Rolling element diameter

• beta Contact angle

The first row is common for all bearing types. If the Paired Preloaded bearing type is
selected, the second row in saved file is included containing the parameters about number
of rolling elements Z, and bearing preload P. The last row is related to the bearing type
Roller Bearing containing the values with the following meaning bearing radial load w,
and rolling element effective length l.
The last file save and load push buttons control are related to bearing power loss analysis
in the panel Bearing Analysis, the structure of the saved file is depicted in the figure 8.12
bellow.

Figure 8.12: Data structure of the heat loss parameters saved file

The meaning of the variables in the saved file Heat_Param.mat is as follow. The variable
Friction contains parameters related for friction momentum calculation, the sequence of
the values stored in the variable is explained below:
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• Fr Radial load

• Fa Axial load

• db Bearing bore diameter

• µ Friction constant factor

• n Bearing operating revolution

• Co Static load rating

• X Radial load factor

• Y Axial load factor

• e Limiting value

• Position Label of the bearing position for dynamic load calculation

If the the lubrication is taken into account for the analysis, the variable Lubrication is
nonzero containing the sequence of the following values:

• ν Grease kinematic viscosity

• fl Lubrication factor

• dm Bearing pitch diameter

The last variable Sealing is nonzero, if the sealing impact is said to be considered in the
analysis, and contains the following sequence of the variables related to sealing momentum
induced in the bearing:

• f1 First sealing factor

• f2 Second sealing factor

• D Bearing outer diameter

8.6. Warning dialogues

As explained in the introduction section of this chapter, in dependency of desired out-
comes, appropriate inputs need to be entered. The program is designed to alert the
user if some inputs are incorrectly entered. The aim is to preserve potential erroneous
calculations. Here is given an overview of such situation.
Missing Young modulus: This parameter is always requested for both deflection and
critical speed analysis. If the related numeric field is empty, the following warning will
appear.
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Figure 8.13: Warning dialogue about Young modulus

Missing material density: This parameter is important for critical speed analysis. So,
if button Critical speed is pushed and the density numeric field is empty, the warning
dialogue will appear.

Figure 8.14: Warning dialogue about material density

Missing Speed Range values: If the user requests again critical speed results, but the
Speed range parameters are empty, program will inform the user to specify the range.

Figure 8.15: Warning dialogue about Speed range

Incorrect boundary conditions: Such situation can occur, if there is not specified
element type called Spring Support, orBearing and concurrently boundary conditions
Loose - Loose is chosen. Consequently, the transfer matrix of the rotor would become
singular and the algorithm would break down. To preserve such occurrence, the following
dialogue warns the user to change the boundary conditions, or redefine the rotor elements.

Figure 8.16: Warning dialogue about possible singular matrix

Missing specific parameters: Such warning will appear in the following cases:

• some parameter for chosen element has not been specified before adding selected
element type

• bearing stiffness is requested, but some parameter has not been entered

• bearing power loss is requested, but some requested parameter has not been specified
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Figure 8.17: Warning dialogue about missing specific parameter

Missing rotor definition This warning will alert the user, if there is no rotor element
defined, and concurrently one of the Deflection, Critical speed, or Save Shaft button is
pushed.

Figure 8.18: Warning dialogue about missing rotor definition

8.7. Software installation

The procedure to run developed program is to run .m-file script appended to this thesis
from running MATLAB script window. The necessity is to have the script in the same
folder with the added figures to visualize of the rotor element types.
For more convinced regular use of the software, the script with the pictures can be packed
in to .mlappinstall file via button Package App in the MATLAB window. After that,
the packed file can be via button Install App uploaded between other available MATLAB
toolboxes.
The script of the application is designated without any dependency on another MATLAB
toolboxes. No additional toolbox is required to be installed to run the application.

Figure 8.19: Application package and install buttons location, in MATLAB window
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9. Application
This chapter is devoted to show a practical example of the specific rotor analysis, to
illustrate the use developed software. Moreover, it will be discussed the impact of the
different approaches to model the bearing stiffness to the final results.

9.1. Solved rotor

The scheme, figure 9.1, depicts the rotor, adopted from [4], which will be solved in this
chapter.

Figure 9.1: Drawing scheme of the solved rotor AF 502-B

The other figure 9.2 shows the the mentioned rotor as a sequence of the discreet elements
for the transfer matrix algorithm. It can be seen, there are 13 elements, when the bearings
are replaced by spring support and the shaft element type with the width corresponding to
the one half of the bearing width is added between the bearing and the adjoining element
(elements no. VI., and no. VIII.). The estimation of the spring (bearing) stiffness is
commented on in further detail below.

Figure 9.2: Scheme of the solved rotor AF 502-B for transfer matrix algorithm
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The following table 9.1 gathers used rotor elements types with the specific parameters’
values.

Table 9.1: Solved rotor parameters
Element type Parameters Value Unit

Shaft element Diameter
Length

D
L

19
40

[mm]
[mm]

Shaft element Diameter
Length

D
L

20
16

[mm]
[mm]

Bearing SKF 7304 BE-2RZP

Shaft element Diameter
Length

D
L

20
7

[mm]
[mm]

Shaft element Diameter
Length

D
L

30
5

[mm]
[mm

Element with magnetic pull
and added mass

Diameter
Length
Mass
Magnetic pull

D
L
m
Cm

18
26

0,625
706000

[mm]
[mm]
[kg]

[N/m]

Shaft element Diameter
Length

D
L

18
5

[mm]
[mm]

Shaft element Diameter
Length

D
L

12
6

[mm]
[mm]

Bearing SKF 7301 BE-2RZP

Shaft element Diameter
Length

D
L

12
9

[mm]
[mm]

Shaft element
with added mass

Diameter
Length
Mass

D
L
m

10
21

0,025

[mm]
[mm]
[kg]

Shaft element Diameter
Length

D
L

8,5
16,5

[mm]
[mm]

Shaft element
with added mass

Diameter
Length Mass

D
L
m

7
15,8
0,06

[mm]
[mm]
[kg]
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9.1.1. Bearing stiffness calculation

The chosen bearings for solved rotor are angular contact ball bearing SKF 7304 BE-2RZP,
and SKF 7301 BE-2RZP. The figure 9.3 shows the geometry of the selected bearings,
obtained from CAD model available in the online catalogue on the website of SKF. In the
figure there are marked the dimensions necessary for the bearing stiffness estimation, and
the induced power losses analysis, based on the formulas stated in the chapters Bearing
stiffness, and Power losses, respectively.

(a) SKF 7304 BE-2RZP (b) SKF 7301 BE-2RZP
Figure 9.3: Selected bearings geometry

The parameters needed for the calculation are grouped in the table 9.2. The value of the
contact angle βf is chosen in accordance with the bearing data available in the online
SKF catalogue.

Table 9.2: Selected bearings parameters

Parameter SKF 7304 BE-2RZP SKF 7301 BE-2RZP
Value Unit Value Unit

Outer-raceway diameter do 46,4 [mm] 32,52 [mm]
Inner-raceway diameter di 26,4 [mm] 16,63 [mm]
Element diameter d 10 [mm] 7.94 [mm]
Pitch diameter de 36.4 [mm] 24.57 [mm]
Outer diameter D 52 [mm] 37 [mm]
Contact angle βf 40 [°] 40 [°]
Number of rolling elements Z 9 [-] 8 [-]
Young modulus, the rings E 210 000 [MPa] 210 000 [MPa]
Young modulus, the rolling elements E 210 000 [MPa] 210 000 [MPa]
Poisson ratio of the rings µ 0.3 [-] 0.3 [-]
Poisson ratio of the rolling elements µ 0.3 [-] 0.3 [-]
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In accordance with the formulas stated in the chapter Bearing stiffness, the bearing el-
ement contact stiffness calculation will be presented based on the bearing geometry di-
mensions stated above. For the bearing 7304 BE-2RZP it holds:
Pitch diameter de:

de =
do + di

2
= 36, 4 mm

Radius curvature for inner-ring raceway:

Rxi =
d (de − dcosβ)

2de
= 3, 9 mm

Ryi =
Rrid

2Rri − 1
= 130 mm

Radius curvature for outer-ring raceway:

Rxo =
d (de + dcosβ)

2de
= 6, 1 mm

Ryo =
Rrod

2Rro − 1
= 88, 3 mm

Radius ratio for inner-ring raceway:

αri =
Ryi

Rxi
= 32, 93

Radius ratio for outer-ring raceway:

αro =
Ryo

Rxo
= 14, 59

Ellipticity ratio for inner-ring raceway and outer-ring raceway:

ki = α
2/π
ri = 9, 24

ko = α2/π
ro = 5, 33

Elliptical integrals for inner-ring raceway and outer-ring raceway:

Fi =
π

2
+
(π
2
− 1

)
lnαri = 3, 56

Fo =
π

2
+
(π
2
− 1

)
lnαro = 3, 10

Ei = 1 +
π − 2

2αri

= 1, 016

Eo = 1 +
π − 2

2αro

= 1, 041
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Effective Young’s modulus of the contact:

E ′ =
2

1−µ2
a

Ea
+

1−µ2
b

Eb

= 230 770 MPa

Contact stiffness for inner-ring raceway:

K1.5i = πkiE
′
(
2EiRi

9Fi

)1/3

= 29 316/m

Contact stiffness for outer-ring raceway:

K1.5o = πkoE
′
(
2EoRo

9Fo

)1/3

= 26 457 N/m

Resulting contact stiffness of the rolling element with the bearing rings is:

K1.5 =
1

{[K1.5i]
2/3 + [K1.5o]

2/3}3/2
= 9.838 · 109 N/m

For the bearing 7301 BE-2RZP, the calculation is processed in analogous way, the resulting
stiffness of the rolling element is:

K1.5 =
1

{[K1.5i]
2/3 + [K1.5o]

2/3}3/2
= 8.763 · 109 N/m

Obtained values of the bearing element contact stiffness will be used further in the rotor
analsysis.
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9.1.2. Analysis setting

The analysis in the program Rotor Shaft Solver was set in the following way:

Table 9.3: Settings of the inputs in the Rotor Shaft Solver
Material panel Unit
Gravity checked
Young modulus 210 000 [MPa]
Density 7850 [kg ·m 3]
Boundary conditions Loose-Loose
Speed Range
Lower bound 1000 [rpm]
Upper bound 200 000 [rpm]
Step 1000 [rpm]

The bearing element contact stiffness calculation stated in the previous section are done
via panel Bearing Parameters as a callback to the input parameters as the figure below
illustrates.

(a)

(b)
Figure 9.4: Calculation of the bearing contact stiffness in Rotor Shaft Solver,

(a) SKF 7304 BE-2RZP , (b) SKF 7301 BE-2RZP
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Through the panels Element Selection and Element Parameters the rotor elements se-
quence was defined, depicted in the following figure.

Figure 9.5: Solved rotor in scheme from program Rotor Shaft Solver

9.1.3. Obtained results

Deflection curve obtained in the program is plotted in the figure below.

Figure 9.6: Computed deflection curve

Critical speed curve in the given range is plotted in the figure below.

Figure 9.7: Computed curve of critical speed

With the bisection method there were located two values of the critical speed in the
specified range. The values correspond to the intersections of the curve with the horizontal
axis, when determinant of the global critical speed of the transfer matrix is zero. This is
in accordance with the theory about the transfer matrix method for critical speed.

• First critical speed 48 234 [rpm]

• Second critical speed 173 266 [rpm]
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Bearing Results
In the panel Bearing Results, the table with the following results is available:

Table 9.4: Obtained bearing results, from static rotor analysis
Reaction [N] Deflection [mm] Stiffness [N/m]

SKF 7304 BE-2RZP 4.6984 4.7759·10-7 9.8378·109

SKF 7301 BE-2RZP 4.9541 5.6530·10-7 8.7637·109

The values of the force reaction are further used in the analysis of the frictional heat
loss induced in the chosen bearings. For the SKF 7304 BE-2RZP the following input
parameters are required.

Table 9.5: SKF 7304 BE-2RZP power loss analysis parameters
Parameter Value Unit
Radial load Fr 4.698 [N]
Axial load Fa 0 [N]
Bore diameter db 20 [mm]
Friction factor µ 0.002 [-]
Revolution n 1500 [rpm]
Load capacity C0 9500 [N]
Radial load factor X 0.35 [-]
Axial load factor Y 0.26 [-]
Limiting value e 1.14 [-]

In accordance with the formulas in the chapter Power losses the friction momentum can
be estimated as follows, for the radial load it holds:

Fa

Fr

< e

P = Fr = 4.698

For the resulting friction momentum it holds:

MF = 0.5 · µ · P · db = 0.094 Nmm

For illustration it is considered the influence of the bearing lubrication, the input pa-
rameters are gathered in the table below. The value of kinematic viscosity was selected
in accordance with the SKF catalogue, when the grease lubrication is considered, the
appropriate lubrication factor fL = 2 is chosen from the table in appendix Frictional
coefficients.

Table 9.6: SKF 7304 BE-2RZP lubrication parameters
Parameter Value Unit
Kinematic viscosity ν 96 [mm2/s]
Lubrication factor fL 2 [-]
Pitch diameter dm 36 [mm]

The lubricant friction momentum can be calculated with the following formula:

ML = 10−7 · fL · (ν · n)2/3 · d3m = 25.636 Nmm
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The total power loss generated in the bearing SKF 7304 BE-2RZP is determined as it
follows.

Pdiss = (MF +ML) ·
2π · n
60

= 4.024 W

For the second bearing SKF 7301 BE-2RZP the process to estimate the power loss is
analogous.

Table 9.7: SKF 7301 BE-2RZP power loss analysis parameters
Parameter Value Unit
Radial load Fr 4.954 [N]
Axial load Fa 0 [N]
Bore diameter db 12 [mm]
Friction factor µ 0.002 [-]
Revolution n 1500 [rpm]
Load capacity C0 5000 [N]
Radial load factor X 0.35 [-]
Axial load factor Y 0.26 [-]
Limiting value e 1.14 [-]

In accordance with the formulas for the friction momentum it can be estimated, for the
radial load:

Fa

Fr

< e

P = Fr = 4.954

The resulting friction moment:

MF = 0.5 · µ · P · db = 0.0594 Nmm

Here it is again considered the influence of the bearing lubrication. The input parameters,
gathered in the table, they are obtained in the same way as in the previous case.

Table 9.8: SKF 7301 BE-2RZP lubrication parameters
Parameter Value Unit
Kinematic viscosity ν 96 [mm2/s]
Lubrication factor fL 2 [-]
Pitch diameter dm 24 [mm]

The lubricant friction momentum can be calculated with the following formula:

ML = 10−7 · fL · (ν · n)2/3 · d3m = 8.08 Nmm

The total power loss generated in the bearing SKF 7304 BE-2RZP is determined as it
follows.

Pdiss = (MF +ML) ·
2π · n
60

= 1.279 W
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9.2. Influence of the bearing stiffness

As was mentioned above in the text, there exist several approaches to estimate the bearing
stiffness. So far used approach based on the Hertz’s elastic contact theory is the most
simplistic. However, such model assumes an extreme case, when only single rolling element
is subjected to the radial load. More realistic model can be explained as follows.
Bearing radial load is distributed among the rolling elements, as the figure 9.8 illustrates.

Figure 9.8: Radial load distribution [13]

Total radial force Fr equals the sum of the supports provided by the individual rolling
elements, expressed by equation [13]:

Fr = Q1 + 2 ·Q2 · cos(α) + 2 ·Q3 · cos(α)... (9.1)

Here, a number of rolling elements Z is considered and α denotes angle between the rolling
elements, 2π/Z, and Qi is the force loading an individual rolling element.
From the general load-deflection formula 5.1, stated in the chapter Bearing stiffness, for
ball bearing it holds Q2/Q1 = (δ2/δ1)

3/2, respectively Q2/Q1 = (cos(α))3/2. After that,
the equation (9.1) becomes [13]:

Fr = Q1 · (1 + 2 · (cos(α))5/2 + 2 · (cos(2α))5/2...) (9.2)

Analogous idea can be considered for rolling element leads to formula [13]:

Fr = Q1 · (1 + 2 · (cos(α))1.9/0.9 + 2 · (cos(2α))1.9/0.9...) (9.3)

The brackets of the equations above express the radial load distribution in the bearing,
it can be observed the distribution depends only on the number of the rolling elements Z
[13]. Further, it can be determined the maximum normal loading for the rolling element,
with the influence of the contact angle β, expressed by the formula [13]:

Qmax =
5 · Fr

Z · cos(β)
(9.4)
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After the maximal load for an individual rolling element has been determined. The
individual deflection at inner and outer ring raceways can be obtained, from the load-
deflection formula 5.1 in the form δ ~ Q

2/3
max, for the elliptic contact, and in the form

δ ~ Q
1/0.9
max for rectangular contact, respectively. By sum of individual rolling elements

radial displacement radial stiffness can be established.
The considerations stated above are the basis for more detailed calculations stated in the
article [18], and [19] presenting established analytical formulas for certain rolling element
bearing. Only the resulting analytical formulas for the bearing stiffness are presented
here, adopted from the article [18].
The final formula for ball bearing radial stiffness is:

K = 0.3743 · (K1.5 · Z)2/3 · (cosβ)5/3 · F 1/3
r (9.5)

The final formula for roller bearing radial stiffness is:

K = 0.2784 · (K1 · Z)0.9091 · (cosβ)1.09091 · F 0.0909
r (9.6)

Here, K1.5, and K1 denotes the element contact stiffness for ball bearing, and for roller
bearing, respectively. Further the Z denotes the number of rolling elements, and the Fr

denotes the the bearing radial load.
It observes from the formulas above, that radial load has to be known for the bearing
stiffness calculation. Following section presents procedure to do such computations in the
practise.

9.3. Improved rotor analysis

Consider the same rotor as at the beginning of this chapter, with the parameters grouped
in the table 9.1. As the bearing stiffness it was considered the estimated contact stiff-
ness. The following table gathers the necessary parameters for the computations of the
bearing stiffness in accordance with the formula (9.3) from the previous section. Stated
force reactions are taken from the previous static rotor analysis, bearing element contact
stiffness as well:

Table 9.9: Inputs for the calculation of the bearing stiffness
Reaction [N] Contact stiffness [N/m] Rolling elements Z

SKF 7304 BE-2RZP 4.6984 9.8378·109 9
SKF 7301 BE-2RZP 4.9541 8.7637·109 8

For bearing SKF 7304 BE-2RZP, it holds:

K = 0.3743 · (K1.5 · Z)2/3 · (cosβ)5/3 · F 1/3
r = 7.9870 · 106 N/m

For bearing SKF 7301 BE-2RZP, it holds:

K = 0.3743 · (K1.5 · Z)2/3 · (cosβ)5/3 · F 1/3
r = 6.9580 · 106 N/m
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Since new estimated stiffness values are three orders smaller, compared to the original
defined rotor, the effect of the different stiffness values to analysis result can be expected.
The bearings in the original rotor system were replaced with the new established values
and the static analysis and the critical speed computation were made again with use of
the program Rotor Shaft Solver. The rotor is depicted below:

Figure 9.9: Solved rotor in scheme with the updated support stiffness values

The following table collects the static calculation results of the origin analysis and the
analysis with updated stiffness values.

Table 9.10: Comparison of resulting bearing reactions and deflection
Stiffness [N/m] Reaction [N] Deflection [mm]

SKF 7304 BE-2RZP 9.8378·109 4.6984 4.7759·10-7
SKF 7301 BE-2RZP 8.7637·109 4.9541 5.6530·10-7

SKF 7304 BE-2RZP 7.9870 ·106 4.9334 6.1767 ·10-4

SKF 7301 BE-2RZP 6.9580 ·106 5.2024 7.4768 ·10-4

From the values of the deflection, the impact of the updated stiffness is evident, since the
deflection is larger compared to the previous case of the rotor when stiffer bearings had
been considered.
Results comparison should be done also for critical speed calculation. Following table give
a comparison of obtained critical speed with respect to different spring support stiffness
values.

Table 9.11: Comparison of critical speed
Bearing stiffness UnitsOriginal Updated

SKF 7304 BE-2RZP 9.8378 ·109 7.9870 ·106 [N/m]
SKF 7301 BE-2RZP 8.7637 ·109 6.9580 ·106 [N/m]
Critical speed
First critical speed 48 234 26 359 [rpm]
Second critical speed 173 266 37 984 [rpm]
Third critical speed - 73 547 [rpm]

The results stated in the tables above implies the support stiffness values have a significant
effect to resulting critical speed values. The outcome corresponds to generally known
assumptions, the higher the stiffness of the system is, the higher the natural frequencies,
respectively critical speeds, are, and vice versa.
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9.4. Validation

Use of stated formulas for bearing stiffness (9.3), and (9.6) has been validated by the
following comparison. From research stated in [20] results of bearing stiffness estimation
has been adopted. For bearing SKF 6205 had been estimated the radial stiffness via finite
element simulation as Kr = 9.5 · 107 N/m, corresponding to radial load Fr = 894 N .
Following table gathers necessary parameters, for the computations:

Table 9.12: Parameters of bearing SKF 6205

Parameter SKF 6205
Value Unit

Outer-raceway diameter do 46,3 [mm]
Inner-raceway diameter di 34.4 [mm]
Element diameter d 7.9 [mm]
Pitch diameter de 38.5 [mm]
Outer diameter D 52 [mm]
Contact angle βf 0 [°]
Number of rolling elements Z 9 [-]
Young modulus, the rings E 210 000 [MPa]
Young modulus, the rolling elements E 210 000 [MPa]
Poisson ratio of the rings µ 0.3 [-]
Poisson ratio of the rolling elements µ 0.3 [-]

Using the developed Rotor Shaft Solver in the panel Bearing Parameters bearing element
contact stiffness has been computed as K1.5 = 8.745 · 109 N/m.

Figure 9.10: SKF 6205 contact stiffness estimation

By substitution of available parameters into equation (9.3), the stiffness of the SKF 6205
is estimated:

K = 0.3743 · (K1.5 · Z)2/3 · (cosβ)5/3 · F 1/3
r = 6.622 · 107 N/m
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For comparison has been used available software MESYS, suitable also for rolling bearing
analysis. The SKF 6205 bearing has been defined in the program in accordance with the
parameters stated in table 9.12, the radial load has been set on the value from stated
FEM analysis Fr = 894 N .
Corresponding radial deflection has been computed as δr = 0.013 mm. Using in general
known formula for load-deflection relation the stiffness has been estimated, as follows:

K =
Fr

δr
= 6.85 · 107 N/m

Obtained values show, the result from stated formula (9.3) is almost the same as result
achieved with MESYS Rolling Bearing Calculation. However, these values are slightly
different from the outcomes, of the FEM analysis. Since the order of the values is the
same 107N/m, it can be concluded, the stated analytical formulas approach, based on
Hertzian contact theory, can be used in practise for rough stiffness estimation.

9.5. Software improvement

In accordance with the conclusion in the end of the previous section, there have been made
certain improvements in the developed program Rotor Shaft Solver. The scheme 9.11
illustrates the iterative work-flow in the improved rotor solver.

Figure 9.11: Scheme of an iterative work-flow in the Rotor Shaft Solver

Let suppose user aims to analyse rotor system, when the bearing support stiffness is not
exactly known. First, the rotor should be defined with the supports considered as rigid.
That means the value of the spring support stiffness should be at least k = 1012 N/m.
As the rotor is defined, the static analysis using the Deflection push button is processed.
After that, the table in the panel Bearing Results is filled in as the figure 9.12 shows.
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Figure 9.12: Improved Bearing Results panel

If the certain bearing is selected using the checkbox in the first column, user can calculate
the bearing contact stiffness using the Bearing Parameters in the Input tab, in the same
way as in the examples stated earlier in the text. With the button Upload the estimated
value is uploaded in the table in corresponding selected row in the column Contact Stiff-
ness. This step is repeated for all supports of the rotor. There exists the option to fill the
contact stiffness directly in the table, since the column Contact Stiffness is editable. After
the contact stiffness has been estimated for all bearings, the calculation of the stiffness
based in the formulas (9.3), and (9.6) can be done.
For this calculation servers the panel Bearing stiffness iterative located next to the Bearing
results table. The check-boxes in the first column is used again to to select the bearing.
As a callback the force reaction and the contact stiffness are uploaded in the fields Radial
load and the Contact stiffness, in the panel Bearing Stiffness Iterative. Only the contact
angle, and number of rolling elements are required as the input, for selected bearing.
After that the stiffness can be calculated, the value appears in the field Updated stiffness.
When the button Update is pressed, the corresponding spring support will be replaced
with the new stiffness value. This step has to be again repeated for all bearings. One
more fact has to reminded. As the stiffness has been updated, data about the deflection
curve and the critical speed are deleted. This can be recognized since the values of the
deflection in the table are exactly 0. To plot the deflection curve, or get the critical speed,
the buttons Deflection, or Critical Speed need to be used again. As a result, new data
about the deflection, or critical speed are obtained and filled in the table.
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9.5.1. Illustrative example

Finally is presented an illustrative example of the iterative rotor analysis procedure. Con-
sider again the rotor from the previous section, when the initial spring support stiffness
is set as k = 1012 N/m, for both bearings. The contact stiffness values are the same, as
estimated in the previous sections: 9.8378 · 109, respectively 8.7637 · 109.
Table below shows comparison of three iterations computed in the Rotor Shaft Solver.
Values of critical speed in first and second iteration implies that first, or second iteration
helps to get be more accurate results with respect to true critical speed, of solved rotor
system.

Table 9.13: Iteration comparison

Bearing Quantity Units Iteration
Initial First Second

SKF 7304 BE-2RZP Reaction [N] 4.6984 4.9334 4.9294
SKF 7301 BE-2RZP 4.941 5.2024 5.1982
SKF 7304 BE-2RZP Support stiffness [N/m] 1012 7.987 106 8.118 106

SKF 7301 BE-2RZP 1012 6.958 106 7.0723 106

SKF 7304 BE-2RZP Power loss [W] 4.0534 4.054 4.054
SKF 7301 BE-2RZP 1.1218 1.2128 1.2127

Rotor critical speed [rpm]
48 234 26 359 26 547
173 266 37 984 38 266

73 547 73 672

Table data show, the iterative procedure of the analysis has importance specially for
critical speed results, if the bearing stiffness is not precisely known at the beginning of
the analysis. Since the values of the bearing reactions only slightly differ during the
iteration, there is not significant difference in induced bearing heat loss.
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10. Summary
This master thesis has been dedicated to practical application of rotor system modeling
methods. Based on the research especially in field of beam analysis methods, bearing
contact stiffness computation, and bearing friction phenomenon, has been developed a
simple software gathering the theoretical findings with aim to make the rotor analysis as
simple as possible for practical performances.
The developed software has been illustrated with practical solving of given rotor system.
Further followed a discussion about the impact of different bearing stiffness estimation
approaches to final outcomes of the analysis. Based on the conclusion arising from the
result comparison has been made an improvement in the developed software. The upgrade
is focused on more precise results to be obtained especially with respect to rotor critical
speed. The enhanced accuracy is gained, since the procedure of the analysis has to be
iterative. The comparison in the final section shows, at least one iteration should be
made to get closer to true critical speed of the rotor. However, it has to be reminded
the used approach is based on simple analytical formula, based on certain simplification
assumption for Hertz’s elastic contact theory. For more complex bearing system, or in
cases with greater accuracy required, the bearing manufacturer should be consulted in
order to obtain the bearing stiffness values reflecting the geometry of particular bearing
design, and other specific operational conditions.
Further, the possible computation of induced bearing heat loss can be useful in potential
design of new rolling-element bearings based on development of new material for the
manufacturing. For instance ceramic materials disposing for example greater abrasion
resistance compared to steel bearings elements can be used with potential improvement
of the bearings’ lifespan.
The bearing lifespan analysis can be one of the future improvements of the developed
software. Another limitation of the solver is the the iterative process of the bearing
stiffness estimation and critical speed analysis has to be performed manually and it is
only up to user how many iterations will be performed.
The last suggestion to improve the built program is more detail analysis of impact of the
magnetic field in solved rotor system. In the developed software the magnetic field in the
machine is represented only with magnetic pull stiffness considered as a constant in the
calculation. It could be in more detail explored mutual influence of the varying bearing
stiffness leading to different deflections even between rotor and stator, and consequently
arising magnetic forces. And vice versa, varying values of magnetic pull stiffness could
affect final bearing load, important for iterative bearing stiffness calculation with the
impact to resulting critical speed.
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11. List of appendix and used
software

Appendix

• Transfer matrices

• Frictional coefficients

Electronic Appendix

• CAD geometry 7304 BE-2RZP

• CAD geometry 7301 BE-2RZP

• MATLAB script of the developed program RotorShaftSolver.m

Used software

• MATLAB R2020b; License: 40874381, MATLAB (Individual)

• Inkscape 0.92.4 (5da689c313, 2019-01-14)

• MESYS Rolling Bearing Calculation; Version: 08-2021b (x64); Demoversion

• Overleaf, Online LaTeX Editor
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Transfer matrices
The following formulas show transfer matrices for certain shaft element in considered
segment given by an arbitrary interval [a, b], adopted from [4]

List of transfer matrices - Static problems
• Shaft element


1 L − L2

2EJ
− L3

6EJ
−SρgL4

24EJ

0 1 −−L
EJ

− L2

2EJ
−SρgL3

6EJ

0 0 1 L −SρgL2

2

0 0 0 1 −SρgL
0 0 0 0 1


a,b

• Shaft element with added mass


1 L − L2

2EJ
− L3

6EJ
−

(
Sρg+mg

l

)
L4

24EJ

0 1 −−L
EJ

− L2

2EJ
−

(
Sρg+mg

l

)
L3

6EJ

0 0 1 L −
(
Sρg+mg

l

)
L2

2

0 0 0 1 −
(
Sρg + mg

l

)
L

0 0 0 0 1


a,b

• Transverse concentrated force
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −F
0 0 0 0 1


a,b

• Spring support


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
k 0 0 1 1
0 0 0 0 1


a,b

• Disc


1 0 0 0 0
0 1 0 0 0
0 Iω2 1 0 0

−mω2 0 0 1 1
0 0 0 0 1


a,b

• Magnetic pull
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– Matrix expressing discretization of magnetic pull stiffness


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−Cm/n− 1 0 0 1 1
0 0 0 0 1


– Matrix describing discretization of shaft element


1 L − (L/n)2

2EJ
− (L/n)3

6EJ
−Sρg(L/n)4

24EJ

0 1 −−(L/n)
EJ

− (L/n)2

2EJ
−Sρg(L/n)3

6EJ

0 0 1 L −Sρg(L/n)2

2

0 0 0 1 −Sρg (L/n)
0 0 0 0 1


– Final matrix arises from multiplication of alternate sequence composed from

last two stated above
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List of transfer matrices - Rotating elements
• Shaft element


V1 (γL)

V2(γL)
γ

−V3(γL)
γ2EJ

−V3(γL)
γ3EJ

γV4 (γL) V1 (γL) −V2(γL)
γEJ

−V3(γL)
γ2EJ

−γ2EJV3 (γL) −γEJV4 (γL) V1 (γL)
V2(γL)

γ

−γ3EJV2 (γL) −γ2EJV3 (γL) γV4 (γL) V1 (γL)


a,b

V1 (γL) =
1
2
[cosh (γL) + cos (γL)]

V2 (γL) =
1
2
[sinh (γL) + sin (γL)]

V3 (γL) =
1
2
[cosh (γL)− cos (γL)]

V4 (γL) =
1
2
[sinh (γL) + sin (γL)]

γ = 4

√
ρSΩ2

EJ

• Shaft element with added mass
The transfer matrix formula is the same as in the previous case with the only
difference for density in the formula for coefficient γ.
ρm = ρ+ m

S·L

• Transverse concentrated force 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


a,b

• Spring support of rotating shaft
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1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1


a,b

• Disc


1 0 0 0 0
0 1 0 0 0
0 IΩ2 1 0 0

−m2 0 0 1 1
0 0 0 0 1


a,b

• Magnetic pull

– Matrix expressing discretization of magnetic pull stiffness


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−Cm/n− 1 0 0 1 1
0 0 0 0 1


– Matrix describing discretization of shaft element


V1 (γL/n)

V2(γL)
γ

−V3(γL/n)
γ2EJ

−V3(γL/n)
γ3EJ

γV4 (γL/n) V1 (γL) −V2(γL/n)
γEJ

−V3(γL/n)
γ2EJ

−γ2EJV3 (γL/n) −γEJV4 (γL/n) V1 (γL/n)
V2(γL/n)

γ

−γ3EJV2 (γL/n) −γ2EJV3 (γL/n) γV4 (γL) V1 (γL/n)
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V1 (γL) =
1
2
[cosh (γL) + cos (γL)]

V2 (γL) =
1
2
[sinh (γL) + sin (γL)]

V3 (γL) =
1
2
[cosh (γL)− cos (γL)]

V4 (γL) =
1
2
[sinh (γL) + sin (γL)]

γ = 4

√
ρSΩ2

EJ

– Final matrix arises from multiplication of alternate sequence composed from
last two stated above
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Frictional coefficients
In this appendix are stated tables for bearing friction coefficients, which are discussed in
chapter Power losses. Data are adopted from [13].

Coefficient of friction for rolling element bearings
Bearing type Coefficient of friction, µ
Deep-groove ball bearings 0.0015
Self-aligning ball bearings 0.0010
Angular-contact ball bearing

Single row 0.0020
Double row 0.0024

Cylindrical roller bearings
With cage 0.0011

Full complement 0.0020
Spherical roller bearings 0.0018
Taper roller bearings 0.0018
Thrust ball bearings 0.0013
Cylindrical roller thrust bearings 0.0050

Lubrication friction factor fL

Bearing type Grease
lubrication

Oil spot
lubrication

Oil bath
lubrication

Vertical shaft
oil jet

Deep-groove ball bearing 0.75-2 1 2 4
Self-aligning ball bearing 1.5-2 0.7-1 1.5-2 3-4
Angular-contact ball bearing

Single row 2 1.7 3.3 6.6
Double row, bearing pair 4 3.4 6.5 13

Cylindrical roller bearing 0.6-1 1.5-2.8 2.2-4 2.2-4
Spherical roller bearing 3.5-7 1.75-3.5 3.5-7 7-14
Taper roller bearing

Single row 3-6 6 8 8-10
Paired single row 12 6 12 16-20

Thrust ball bearing 5.5 0.8 1.5 3
Cylindrical roller bearing 9 3.5 7

Friction factors for bearing seals f1 and f2

Bearing design Factors
f1 f2

Deep groove ball bearings (2RS1), self-aligning ball bearings (2RS1),
angular-contact ball bearing (2RS), Y-bearings (series 17262(00)-2RS1
and 17263(00)-2RS1)

20 10

Y-bearings (all other series), needle roller bearings (2RS) 20 25
Cylindrical roller bearings, full complement (2LS)
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