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Abstract
The theory of deterministic chaos has generated a lot of interest and continues to be one
of the much-focused research areas in the field of dynamics today. This is due to its preva-
lence in essential parts of human lives such as electrical circuits, chemical reactions, the
flow of blood through the human system, the weather, etc. This thesis presents a study
of the Lorenz equations, a famous example of chaotic systems. In particular, it presents
the analysis of the Lorenz equations from stability to chaos and various bifurcation sce-
narios with numerical and graphical interpretations. It studies concepts of non-linear
dynamical systems such as equilibrium points, stability, linearization, bifurcation, Lya-
punov function, etc. Finally, it discusses how the Lorenz equations serve as a model for
the waterwheel (in detail), and the convection roll for fluid.
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1. Introduction
The word chaos is borrowed from the ancient Greek word “abyss” which meant void.

The meaning has metamorphosed through different meanings before getting its current
meaning as disorder. Some definitions also define chaos as disarray, disorganization or
confusion. Today scientists use chaos to describe complex systems whose behaviour is so
unpredictable, random and highly sensitive to small change in condition or perturbation.
(Deterministic) chaos does not mean completely messy or disorder as many may think,
in fact, chaotic systems are predictable but only for a very short while before entering
into duration of chaos. This makes future predictions difficult. Chaos is essential area of
dynamics which has been studied since Newton’s time when he proposed the concept of
Newtonian mechanics. The theory of chaos has generated a lot of interest and continuous
to be one of the much focused research areas in the field of dynamics today. This is due
to its prevalence in most aspect of human life, such as in the behaviour of the weather,
airplanes in flight, flow of oil in underground pipes, flow of blood through the human
system, etc. which we cannot ignore. Another reason for the arousing interest in the
study of chaos is the fascinating history to its discovery. Before the discovery of chaos in
deterministic models, people believed classical mechanics were predictable provided you
have the necessary instrument to take measurement or the mathematical skills to solve
the system. This is captured in Gleick’s book [5] where he quoted one physicist who
said ”Relativity eliminated the Newtonian illusion of absolute space and time; quantum
theory eliminated the Newtonian dream of a controllable measurement process; and chaos
eliminates the Laplacian fantasy of deterministic predictability.” There are many chaotic
systems, however the Lorenz system is popular and perhaps the most studied chaotic
system. This is due to the complexity of the system, and also serving as model for other
physical and practical phenomena such as the convection roll for fluid, chaotic waterwheel
and its application in generating secret messages. For these reasons, we have chosen to
study the Lorenz system.

1.1. Thesis Objectives
This research seeks to achieve the following:

1. To study a description of how Lorenz equations arise in various models

2. To study selected concepts from the theory of nonlinear systems (such as equilibrium
point, stability, linearization, bifurcation, Lyapunov function, (deterministic) chaos,
(strange) attractor, Lyapunov exponent, etc.)

3. To study the routes from stability to chaos and discussion of bifurcation scenarios.

4. Numerical testing of theoretical results and their graphical interpretation.

1.2. Organisation of Work
This research has six chapters. Chapter 1 talks about general introduction to our research.
It includes specific objectives of the thesis. Chapter 2 reviews some relevant literature in
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1. INTRODUCTION

the area of study with a brief history of the subject. Chapter 3 explains the methods used
and their applications to the study. Chapter 4 discusses the analysis and simulation of the
Lorenz system. Chapter 5 talks about some physical models the Lorenz equations model.
The final part of the thesis includes conclusion of results and some recommendations.
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2. Literature Review
In the early 1600s, physicists focused on exploring the astronomy and the beauty of

planetary motions. Specifically, most physicists tried to solve the two-body problem - the
problem of calculating the motion of Earth around the Sun given the inverse – square law
of attraction between them. The problem remained unsolved after several attempts by
physicists and mathematicians. However, in the mid-1600s, the problem saw the light of
the day when Newton solved the problem with differential equation he invented and laws
of motion he had discovered. Newton tried to extend his discovery to solving three-body
problem (the Sun, Earth and Moon) which he formulated in 1687. The solution to the
three body was practically necessary to accurately determine marine navigation at sea
[9]. After decades of effort, the problem seemed impossible to solve. He admitted that
the three body problem was very difficult to solve and this grew the interest of many
physicists and mathematicians to the problem.
Henri Poincaré developed qualitative methods to solve differential equations and used
them to identify and study possible periodic orbits. Poincaré’s new qualitative approach
led him to identify the unpredictability of the problem, and to discovery of a new complex
phenomenon which is known as chaos [9], [10]. Poincaré had the first glimpse of the com-
plexity, chaos; in which a deterministic model shows nonperiodic behaviour that depends
sensitively on the initial conditions, making long-term prediction impossible. In 1887, in
honour of his 60th birthday, King Oscar II, king of Sweden established in collaboration
with the Acta Mathematica Journal, a competition to award anyone who could solve the
three body problem. Poincaré’s incredible contributions won him the King’s prize [1],
[2]. Poincaré’s discovery of chaos did not receive much attention in the first half of the
twentieth century; instead dynamics was largely concerned with nonlinear oscillator and
their applications in physics and engineering [16].
Edward Lorenz is known as the man who reintroduced the theory of chaos when he
encountered one himself during his experiment. In 1960, E. N Lorenz working as mete-
orologist at MIT embarked on a research to simulate and predict the weather. Lorenz
came up with twelve variables he believed could predict the weather. They were numeri-
cal rules – equations that expressed the relationships between temperature, pressure, and
wind speed [5]. Lorenz had developed a deterministic model which he would simulate, yet
could not predict the outcome. In an attempt to try a new approach, Lorenz decided to
take a shortcut. He started half way through the program instead of starting the whole
run over. He set the numbers from the previous run printed out as initial conditions for
the new run and realised something unexpected. Lorenz expected this new run to dupli-
cate the old, however to his surprise, the new print out seemed completely different from
the old yet he had not changed anything apart from the start up initial condition. All
resemblance had disappeared [5]. In surprise with what he was seeing he performed accu-
racy checks on his inputs and the functionality of his machine and realised the difference
was a result of slight difference in the initial conditions he had input. Lorenz had entered
the shorter rounded-off numbers and the system responded sensitively with a different
results [4]. Lorenz simplified his system down to a set of three nonlinear equations that
described the currents induced in a convective cell of liquid when heated from the bottom
[5]. Lorenz’s discovery of chaos in his simple system of equations of only two nonlineari-
ties awakened research into chaos. Scientists began to realise the existence of chaos in all
aspect life. They identified chaos that develops in the heart of human, the main cause of
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2. LITERATURE REVIEW

sudden and unexplained death, etc. James Gleick’s book on Lorenz’s discovery of chaos
was amazingly a bestseller for months [16].
Chaos remains interesting and tremendously fascinating today. The Lorenz system of
equations have generated a large interest for further studies. Today, there is numerous
research on chaos, particularly, the Lorenz equations. Wilem Malkus invented the chaotic
waterwheel, a mechanical analogous system which simulates the Lorenz equations in 1972
[10]. In 1975, Haken derives the Lorenz equations from a problem of irregular spiking
in lasers [6], Knobloch discusses a derivation from a disc dynamo [8]. In 2013, Anthony
Tongen, Roger J. Thelwell and David Becarra – Alonso studied a different version of the
Wilem Malku’s invention where they used sandwheel [17].
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3. Methods Used
Dynamics is a field in mathematics which deals with change with systems that evolve

in time. The subject analyses the behaviour of systems and discusses the questions of
whether the system settle down to equilibrium, keeps repeating in cycles or does something
more complicated [16]. Here, we discuss the tools we would need to comprehensively study
the Lorenz system. We consider continuous autonomous dynamical systems. Details of
the discussions here can be found in [16], [13], [7] and [12].

3.1. Linear System
The system of linear differential equations with n variables is stated as

ẋ1 = a1,1x1 + a1,2x2 + · · ·+ a1,nxn

ẋ2 = a2,1x1 + a2,2x2 + · · ·+ a2,nxn

...
ẋn = an,1x1 + an,2x2 + · · ·+ an,nxn

where all the ai,j are constant real numbers. This can be represented using the vector
and matrix notation as

ẋ = Ax (3.1)

where A is n × n matrix with given constant real entries ai,j, and x is the column vector
Rn of the variables,

x = (x1, . . . , xn)
T .

Theorem 3.1.1 (The Fundamental Theorem for Linear Systems) Let A be n ×
n matrix. Then for a given x0 ∈ Rn , the initial value problem

ẋ = Ax
x(0) = x0

has solution given by

x(t) = eAtx0

where eAt is an n × n matrix function defined by its Taylor series.

3.1.1. Linear System in R2

In this section we discuss the various phase portraits (geometric representation of solu-
tion curves) that are possible for the linear system (3.1). Before getting into detailed
discussions, we state the following important theorem.

16



3. METHODS USED

Theorem 3.1.2 (Linearity Principle) Let equation (3.1) be a planar system. Suppose
that y1(t) and y2(t) are solutions of this system, and that the vectors y1(0) and y2(0) are
linearly independent. Then

x(t) = αy1(t) + βy2(t)

is the unique solution of this system that satisfies x(0) = αy1(0) + βy2(0).

Now consider the system (3.1) and suppose that A has two real eigenvalues λ1 < λ2.
Assuming that λi 6= 0, there are three cases to consider:

(a) λ1 < 0 < λ2

(b) λ1 < λ2 < 0

(c) 0 < λ1 < λ2

We give specific example of each case.

Example(saddle): Consider the simple case of the linear system (3.1) with

A =

(
λ1 0
0 λ2

)
.

The characteristic equation is
(λ− λ1)(λ− λ2),

so λ1 and λ2 are the eigenvalues with eigenvectors (1, 0) and (0, 1) respectively. From the
Linearity principle, we find the general solution

x(t) = αeλ1t

(
1
0

)
+ βeλ2t

(
0
1

)
.

Since λ1 < 0, the straight-line solutions of the form αeλ1t(1, 0) lie on the x− axis and
tend to (0, 0) as t → ∞. This axis is called the stable line. Since λ2 > 0, the solutions
βeλ2t(0, 1) lie on the y− axis and tend away from (0, 0) as t → ∞; this axis is the unstable
line. All solutions (with α, β 6= 0) tend to ∞ in the direction of the unstable line, as
t → ∞, since x(t) comes closer and closer to (0, βeλ2t) as t increases. In backward time,
these solutions tend to ∞ in the direction of the stable line. The equilibrium point of a
system of this type (eigenvalues satisfying λ1 < 0 < λ2) is called a saddle. see figure 3.1
for the phase portrait of this system.

Figure 3.1: Saddle phase portrait for x
′
= −x, y

′
= y. Source [7].
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3.1. LINEAR SYSTEM

Example: Consider the case where

A =

(
1 3
1 −1

)
The eigenvalues of A are ±2. The eigenvector associated with λ = 2 is the vector (3, 1);
the eigenvector associated with λ = −2 is (1,−1). The solution assumes the form

x(t) = αe2t
(

3
1

)
+ βe−2t

(
1
−1

)
for some α, β. If α 6= 0, as t → ∞, we have

x(t) ∼ αe2t
(

3
1

)
= x1(t)

whereas, if β 6= 0, as t → −∞,

x(t) ∼ βe−2t

(
1
−1

)
= x2(t)

Thus, as time increases, the typical solution approaches x1(t) while, as time decreases,
this solution tends toward x2(t), just as in previous example. See figure 3.2 for phase
portrait.

Figure 3.2: Saddle phase portrait for x
′
= x+ 3y, y

′
= x− y. Source [7].

Example(Sink): Now consider the case where

A =

(
λ1 0
0 λ2

)
but λ1 < λ2 < 0. The general solution assumes the form

x(t) = αeλ1t

(
1
0

)
+ βeλzt

(
0
1

)
as before. Unlike the saddle case, now all solutions tend to (0.0) as t → ∞. How then
does it approach the origin? To answer this we compute the slope dy/dx of a solution
with β 6= 0. We get

x(t) = αeλ1t

y(t) = βeλ2t

and compute
dy

dx
=

dy/dt

dx/dt
=

λ2βe
λ2t

λ1αeλ1t
=

λ2β

λ1α
e(λ2−λ1)t.

18



3. METHODS USED

Since λ2−λ1 > 0, it follows that these slopes approach ±∞(provided β 6= 0). Thus, these
solutions tend to the origin tangentially to the y-axis.
Since λ1 < λ2 < 0, we call λ1 the stronger eigenvalue and λ2 the weaker eigenvalue. The
reason for this in this particular case is that the x-coordinates of solutions tend to 0 much
more quickly that the y-coordinates. See figure 3.3a for phase portrait.

Figure 3.3: Phase portraits for a sink and a source. Source [7].

Example(Source): Consider the case when

A =

(
λ1 0
0 λ2

)
which satisfies 0 < λ2 < λ1. The general solution and phase portrait remain the same,
except that all solutions now tend away from (0, 0) along the same paths. See figure 3.3b.

Next we consider the case where the roots of the characteristic polynomial are complex
numbers. In such case, we no longer have straight-line solutions. However, we can still
derive the general solution as before by using a few tricks involving complex numbers and
functions.
Example(Center): Consider the case where

A =

(
0 β

−β 0

)
and β 6= 0. The characteristic polynomial is λ2 + β2 = 0, with eigenvalues now imaginary
numbers ±iβ. We find the corresponding eigenvector to be λ = iβ by solving(

−iβ β
−β −iβ

)(
x
y

)
=

(
0
0

)
or iβx = βy, since the second equation is redundant. Thus, we find a complex eigenvector
(1, i), and so the system assumes solution of the form

x(t) = eiβt
(

1
i

)
.

Using Euler’s formula:
eiβt = cos βt+ i sin βt,

we rewrite the solution as

x(t) =
(

cos βt+ i sin βt
i(cos βt+ i sin βt)

)
=

(
cos βt+ i sin βt
− sin βt+ i cos βt

)
19



3.1. LINEAR SYSTEM

This can further be written as

x(t) = xre(t) + ixim(t)

where
xre(t) =

(
cos βt
− sin βt

)
, xim(t) =

(
sin βt
cos βt

)
But now we see that both xre(t) and xim(t) are real solutions of the original system. We
smply check

x′
re(t) + ix′

im(t) = x′(t)

= Ax(t)
= A (xre(t) + ixim(t))

= Axre + iAxim(t)

Equating the real and imaginary parts of this equation yields x′
re = Axre and x′

im = Axim

which shows that both are indeed solutions. Since

xre(0) =

(
1
0

)
, xim(0) =

(
0
1

)
the linear combination of these solutions,

x(t) = a1xre(t) + c2xim(t)

where c1 and c2 are arbirary constants, provides a solution to any initial value problem.
Each of these solutions is a periodic function with period 2π/β. The phase portrait shows
that all solutions lie on circles centered at the origin. These circles are traversed in the
clockwise direction if β > 0, counterclockwise if β < 0. See figure 3.4. This type of system
is called a center.

Figure 3.4: Phase portraits for a center. Source [7].

Theorem 3.1.3 (Stability of Linear Systems) Let δ = det A and τ = trace A and
consider the linear system (3.1) in R2

(a) If δ < 0 then equation (3.1) has a saddle at the origin.

(b) If δ > 0 and τ 2 − 4δ ≥ 0 then equation (3.1) has a node (sink) at the origin; it is
stable if τ < 0 and unstable if τ > 0

(c) If δ > 0, τ 2 − 4δ < 0 and τ 6= 0 then (3.1) has a focus at the origin; it is stable if
τ > 0 and unstable if τ > 0.

(d) If δ > 0 and τ = 0 then equation (3.1) has a centre at the origin.
Remark: Note that in the case (b), τ 2 ≥ 4|δ| > 0; i.e., τ 6= 0

20



3. METHODS USED

3.2. Nonlinear System
The nonlinear system of differential equations is stated as

ẋ = f(x) (3.2)

where f : E → Rn and E is a subset of Rn. Nonlinear systems in general, are difficult to
solve analytically, however, we are able to study the behaviour of the system and extract
most necessary information with geometrical techniques, topological techniques and nu-
merical methods. It is neccessary to define some terminologies and notation concerning
the derivative Df of a function f : Rn → Rn.

Definition 3.2.1 The function f : Rn → Rn is differentiable at x0 ∈ Rn if there is a
linear transformation Df(x0) ∈ L(Rn)(linear space), that satisfies

lim
|h|→0

|f (x0 + h)− f (x0)−Df (x0)h|
|h|

= 0.

The linear transformation Df(x0) is called the derivative of f at x0. The following theorem
gives us a method for computing the derivative in coordinates.

Theorem 3.2.1 If f : Rn → Rn is differentiable at x0, then the partial derivatives
∂fi/∂xj, i, j = 1, . . . , n all exist at x0 and for all x ∈ Rn,

Df (x0) x =
n∑

j=1

∂f

∂xj

(x0)xj.

Thus, if f is a differentiable function, the derivative Df is given by the Jacobian matrix

Df =

[
∂fi
∂xj

]
.

Theorem 3.2.2 (The Fundamental Existence-Uniqueness Theorem) Let E be an
open subset of Rn containing x0 and assume that f ∈ C1(E). Then there exists an a > 0
such that the initial value problem

ẋ = f(x)
x(0) = x0

has a unique solution x(t) on the interval [−a, a].

Definition 3.2.2 The function φ (t; x0), which gives the solution as a function of the
time t and initial condition x0, is called the flow of the differential equation (3.2).

3.3. Linearization
A very important state of our system of differential equations is the stationary state. This
is the point where ẋ = 0. Thus, there is no flow at this point.
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3.4. STABILITY OF NONLINEAR SYSTEM

Definition 3.3.1 A point x0 ∈ Rn is called an equilibrium point or critical point of
equation (3.2) if f(x0) = 0. An equilibrium point x0 is called a hyperbolic equilibrium
point of equation (3.2) if none of the eigenvalues of the matrix Df (x0) have zero real
part.

After obtaining the equilibrium points, we would want to know how the system behaves
close to the equilibriums. This leads us to what is called linearization. The local behaviour
of the nonlinear system (3.2) near a hyperbolic equilibrium point x0 is qualitatively de-
termined by the behaviour of the linear system

ẋ = Ax (3.3)

with the matrix A = Df (x0), near the origin. If x0 is an equilibrium point of equation
(3.2), then f(0) = 0 and by Taylor’s Theorem,

f(x) = Df(0)x +
1

2
D2f(0)(x, x) + · · · .

It follows that the linear function Df(0)x is a good first approximation to the nonlinear
function f(x) near x = 0 and it is reasonable to expect that the behavior of the nonlinear
system (3.2) near the point x will be approximated by the behaviour of its linearization
at x = 0.

Definition 3.3.2 An equilibrium point x0 of equation (3.2) is called a sink if all the
eigenvalues of the matrix Df (x0) have negative real part; it is called a source if all the
eigenvalues of Df (x0) have positive real parts; and it is called a saddle if it is a hyperbolic
equilibrium point and Df (x0) has at least one eigenvalue with a positive real part and at
least one with a negative real part.

3.4. Stability of Nonlinear System
After a ”small” perturbation of the system, does the system decay (returns to its equilib-
rium point) or grows and if it does, how fast is it? The following definition explains the
meaning of stability, unstable, asymptotically stable and global stability.

Definition 3.4.1 Let φ(t; x) denote the flow of differential equation (3.2) defined for all
t ∈ R. An equilibrium point x0 of equation (3,2) is stable if for all ε > 0 there exists a
δ > 0 such that for x ∈ Nδ (x0) and t ≥ 0 we have

φ(t; x) ∈ Nε (x0) .

The equilibrium point x0 is unstable if it is not stable. And x0 is asymptotically stable if
it is stable and if there exists a δ > 0 such that for all x ∈ Nδ (x0) we have

lim
t→∞

φ(t; x) = x0.

If the flow approaches x∗ from all initial conditions, x∗ is said to be globally stable.

These information are obtained from the linearized system, thanks to the Hartman-
Grobman Theorem. The stability of any hyperbolic equilibrium point x0 of equation
(3.2) is determined by the signs of the real parts of the eigenvalues λj of the Jacobian
matrix. This is summarised in the following theorem:
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Theorem 3.4.1 (Hartman-Grobman Theorem of Stability ) Let J = Df (x0) be
the Jacobian matrix for the system (3.2) evaluated at a fixed point x0 and let λj be its
eigenvalues

(a) If <(λj) < 0 for all λj then the fixed point x0 is asymptotically stable.

(b) If <(λj) > 0 for at least one λj, then the fixed point x0 is unstable.

(c) If <(λj) = 0 for at least one λj, then the fixed point x0 is nonhyperbolic and its
stability cannot be determined by the linearization method.

From the theorem above, any hyperbolic equilibrium point of equation (3.2) is either
asymptotically stable or unstable. Therefore, the only time that an equilibrium point x0

of equation (3.2) can be stable but not asymptotically stable is when Df(x0) has a zero
eigenvalue or a pair of complex-conjugate, pure-imaginary eigenvalues λ = ±b.
In the case of nonhyperbolic equilibrium point, we need the Lyapunov theorem which
follows.

Theorem 3.4.2 (Lyapunov Theorem ) Let E be an open subset Rn containing x0.
Suppose that f ∈ C1(E) and that f(x0) = 0. Suppose further that there exists a real
valued function V ∈ C1(E) satisfying V (x0) = 0 and V (x) > 0 if x 6= x0.Then

(a) If V̇ (x) ≤ 0 for all x ∈ E, x0 is stable;

(b) If V̇ (x) < 0 for all x ∈ E\ {x0}, x0 is asymptotically stable;

(c) If V̇ (x) > 0 for all x ∈ E\ {x0}, x0 is unstable.

In many applications, computing the eigenvalues of the system for stability study is diffi-
cult. For instance, in the Lorenz system we would be studying, computing the eigenvalues
for the Rayleigh number, r > 1 would not be helping. In such cases the characteristic
polynomial can save us from complex computation. For instance we can determine the
signs of the possible zeros which gives the nature of stability of the eigenvalues. Descartes’
rule of signs gives an idea of the zeros of a polynomial function e.g. the number of positive
zeros, negatives zeros and even the possible number of imaginary solutions. Of course,
we cannot leave out the well-known and mostly used Routh-Hurwitz stability criterion in
such situations.

3.4.1. The Routh-Hurwitz Stability Criterion
The Routh-Hurwitz stability criterion as proved independently by A. Hurwitz and E. J.
Routh has occupied the interest of many engineers for investigating the stability of linear
systems. The Routh - Hurwitz criterion is a necessary and sufficient criterion for the
stability of linear systems. Consider the characteristic polynomial:

q(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0 = 0

It is necessary but not sufficient requirement that all the coefficients for a stable system
be nonzero. If this is not satisfied, we conclude immediately that the system is unsta-
ble. However, if they are satisfied we proceed to ascertain the stability of the system.
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The algorithm for the Routh-Hurwitz criterion begins with ordering the characteristic
polynomial into the following array

sn

sn−1 | an an−2 an−4 · · ·
an−1 an−1 an−5 · · ·

Further rows of the array are then completed as

sn an aa−2 aa−4

sn−1 an−1 aa−3 an−5

sn−2 bn−1 ba−3 bn−5

sn−3 cn−1 cn−3 nn−5
... ... ... ...
s0 hn−1

where
bn−1 =

an−1an−2 − anan−3

an−1

=
−1

an−1

∣∣∣∣ an an−2

an−1 an−1

∣∣∣∣
bn−3 = − 1

an−1

∣∣∣∣ an an−1

an−1 an−5

∣∣∣∣
ca−1 =

−1

bn−1

∣∣∣∣ an−1 an−1

b2−1 bn−1

∣∣∣∣
The Routh-Hurwitz criterion states that the number of roots of q(s) with pos-
itive real parts is equal to the number of change in sign of the first column of
the Routh array. For stability, we require that no changes in the first column of the
Routh array. We discuss two special cases of the Routh-Hurwitz criterion with illustrative
examples.

Case 1. There is a zero in the first column, but some other elements of the row containing
the zero in the first column are nonzero. If only one element in the array is zero, it may
be replaced with a small positive number, ε, and the limit as it approaches zero is taken
after completing the array. For example, consider the characteristic polynomial:

q(s) = s5 + 2s4 + 2s3 + 4s2 + 11s+ 10

The Routh array is then
s5 1 2 11
s4 2 4 10
s3 ε 6 0
s2 c1 10 0∗

s1 d1 0 0
s0 10 0 0

where
c1 =

4ε− 12

ε
=

−12

ε

and
d1 =

6c1 − 10ε

c1
→ 6
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The signs changes from ε to c1 and to d1 as we move down the first column. We conclude
that the system is unstable, and two zeros lie in the right half of the plane.

Case 2. There is a zero in the first column, and the other elements of the row con-
taining the zero are also zero. This is the case when all the elements in one row are zero
or when the row consists of a sigle element that is zero. This case is realised when the
polynomial contains roots that are symmetrically located about the origin of the s plane.
Thus, this is the case when factor (s+ σ)(s− σ) or (s+ ωi)(s− ωi) occur. In such cases,
we make use of what is called auxiliary polynomial, U(s), which immediately preceds
the zero entry in the Routh array. The order of the auxiliary polynomial is always even
and indicates the number of symmetrical root pairs.
Example Consider the characteristic polynomial

q(s) = s3 + 2s2 + 4s+K

where K is free. The Routh array is

s3 1 4
s2 2 K
s1 8−K

2
0

s0 K 0

From the Routh-Hurwitz stability criterion, stability of the system requires that

0 < K < 8

however, when K = 8, we obtain the case of marginal stability with two roots on the
ωi-axis. For K = 0, we form the auxiliary polynomial form the preceding row s2 -row.
Notice the even power.

U(s) = 2s2 +Ks0 = 2s2 + 8 = 2
(
s2 + 4

)
= 2(s+ 2i)(s− 2i)

dividing q(s) by U(s) tells us that the auxiliary polynomial, U(s) is indeed a factor of the
characteristic polynomial. And so, when K = 8, the characteristic polynomial has the
factors

q(s) = (s+ 2)(s+ 2i)(s− 2i)

3.4.2. Descartes’ rule of signs
The Descartes rule of signs as earlier said gives an idea of the zeros of a polynomial
function.

Theorem 3.4.3 (Descartes’ rule of signs) Let p(x) = a0x
b0 + a1x

b1 + · · ·+ anx
bn de-

note a polynomial with nonzero real coefficients ai, where the bi, are integers satisfying
0 ≤ b0 < b1 < b2 < . . . < b. Then the number of positive real zeros of p(x) (counted with
multiplicities) is either equal to the number of variations in sign in the sequence (a0, · · · an)
of the coefficients or less than it by an even whole number. The number of negative zeros
of p(x) (counted with multiplicities) is either equal to the number of variations in sign in
the sequence of the coefficients of p(−x) or less than it by an even whole number.
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Example: For the polynomial function

f(x) = x3 − 2x2 − x+ 2

we want to find the number of positive, negative or imaginary solutions. From the function
f(x) we observe two sign changes. According to the rules, the number of positive zeros
is either equal to the number of sign change of f(x) or could be less than a positive even
integer. Therefore the function may have either two or zero i.e., 2− 2 = 0 possible roots.
For the negative possible roots, we check

f(−x) = (−x)2 − 2(−x)2 − (−x) + 2

= x2 − 2x2 + x+ 2

Again the number of negative zeros is equal to the number of sign changes or less by
a positive even integer. Here the only possible number of negative root is one, because
1−2 = −1 does not make sense. The function is a 3rd-order polynomial, hence we expect
three roots. With this information, we can generate the following possibilities:

Positive Negative Imaginary Total
2 1 0 3
0 1 2 3

3.5. Bifurcation
Perturbation of a dynamical system cannot only change the stability of the equilibrium
points, but also the qualitative structure of the system. These qualitative changes in
the dynamics are called bifurcations, and the parameter values at which they occur are
called bifurcation point. This is very common in application, where we would want to see
how control parameters affect stability and instability of the system as they vary. There
are several types of bifurcation that a dynamical system could experience. These include
the Pitchfork bifurcation and the Andronov - Hopf bifurcation which the Lorenz system
experiences.
The pitchfork bifurcation is prevalent in systems which are symmetric such as the Lorenz
system. There are two types of this bifurcation, the subcritical pitchfork bifurcation
and supercritical pitchfork bifurcation. Supercritical pitchfork bifurcation normally are
formed in systems where new stable equilibria are created to add to an existing stable
equilibrium point as the system varies through a bifurcation value. The already existing
equilibrium point becomes unstable after bifurcation. This is not so different from the
subcritical pitchfork bifurcation except that the newly born equilibria are unstable in this
case.
In the Andronov – Hopf bifurcation, no new equilibria arise. Instead, a periodic solution
is born at the equilibrium point as the control parameter varies through the bifurcation
value. This type of bifurcation is experienced by systems where equilibrium point has
complex eigenvalues. There are also two types of this bifurcation, the Hopf supercritical
bifurcation and subcritical Hopf bifurcation. At supercritical Hopf bifurcation, limit cycle
appears after the real part of the eigenvalue has become positive, whereas limit cycle
appears before the bifurcation, where the real part of the eigenvalue at the fixed point is
negative in the case of Hopf subcritical bifurcation. See [13] for detailed discussions.
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The Homoclinic bifurcation is one of the kinds of gobal bifurcations. In this bifurcation,
a periodic orbit or cycle is born or dies in a homoclinic loop as it moves close and touch
a saddle point. If φ(t; x) tends to the equilibrium point x∗ as t → ±∞, then φ(t; x)
is a homoclinic orbit. More precisely, a homoclinic orbit lies in the intersection of the
stable manifold and the unstable manifold. For a clearer understanding of homoclinic
bifurcation, we demostrate with the following example. Consider the system

ẋ = y

ẏ = µy + x− x2 − xy

The system has bifurcation at µc ≈ −0.8645. For µ < µc, a stable limit cycle passes close
to a saddle point at the origin. See figure 3.5a. As µ increases to µc, the limit cycle
swells (see figure 3.5b) and enters into the saddle, resulting in a homoclinic orbit. See
figure 3.5c. When µ > µc, the saddle connection breaks and the loop is destroyed, see
figure 3.5d.

Figure 3.5: Homoclinic bifurcation through µc ≈ −0.8645. Source [16].

3.6. Limit Sets and Attractors
The long – term behaviour of the flow φ (t; x0) of a dynamical system as time goes to plus
or minus infinity is key. We first explain the concept of ω- limit set and the α- limit set
of φ (t; x0).

Definition 3.6.1 A point q is an ω- limit point of the trajectory of x0, provided that
φ (t; x0) keeps coming near q as t goes to infinity, i.e., there is a sequence of times tj, with
tj going to infinity as j goes to infinity, such that φ (tj; x0) converges to q. Certainly, if
‖φ (t; x0)−x∗‖ → 0 as t → ∞ then x∗ is the only ω- limit point of x0. There can be more
than one point that is an ω-limit point of x0. The set of all ω-limit points of x0 is denoted
by ω(x0) and is called the ω − limitset of x0.
Similarly, a point q is an α− limit point of x0, provided that φ (t; x0) keeps coming near
q as t goes to minus infinity. In particular, if ‖φ (t; x0)−x∗‖ → 0 as t → −∞, then x∗ is
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the only α- limit point of x0. The set of all α-limit points of x0 is denoted by α(x0) and
is called the α- limit set of x0.

Remark: if x0 is a fixed point, then ω(x0) = α(x0) = {x0}

Definition 3.6.2 Let φ (t; x0) be the flow of system of differential equations (3.2). A
subset of the phase space S is called positive invariant provided that φ (t; x0) is in S for
all x0 in S and all t ≥ 0. A subset of the phase space S is called negatively invariant
provided that φ (t; x0) is in S for all x0 in S and t ≤ 0. Finally, a subset of the phase
space S is called invariant provided that φ (t; x0) is in S for all x0 in S and all real t.

An invariant set S is called transitive, provided that there is a point x0 in S such that the
orbit of x0 comes arbitrarily close to every point in S.

3.7. Periodic Orbits
The flow φ (t; x0) of the differential equation (3.2) may be periodic. A point x0 is a
periodic point of period T if φ (T ; x0) = x0 ,but φ (t; x0) 6= x0 for 0 < t < T . The set of
all the points {φ (t; x0) = x0 : 0 ≤ t ≤ T} is called a periodic orbit or closed orbit if x0 is
periodic with period T. The flow φ (t; x0) is periodic in time, thus φ (t+ T ; x0) = φ (t; x0)
for all t, hence the name periodic orbit. Also, the set of points on the whole orbit
{φ (t; x0) := −∞ < t < ∞} is a closed set, thus the orbit “closes” up, hence the name
closed orbit. Orbits close to periodic orbits may not be periodic. In such case, we have
what is called limit cycle. A limit cycle is an isolated periodic orbit. As in the case of
periodic orbits, limit cycles can have different types of stability depending on trajectories
close to the periodic orbit move towards or away from it.

3.8. Poincaré Map
The Poincare map also referred to as the first return map is a type of map for analysing
systems that appear to have periodic behaviour.

Definition 3.8.1 Consider a system of differential equations (3.2), and a point x∗ for
which one of the coordinate functions fk (x∗) 6= 0. The hyperplane through x∗ formed by
setting the kth coordinate equal to a constant,

Σ = {x : xk = x∗
k}

is called a transversal, because trajectories are crossing it near x∗. Assume that φ (τ ∗; x∗)
is again in Σ for some τ ∗ > 0. We also assume that there are no other intersections of
φ(t; x∗) with Σ near x∗. For x near x∗, there is a nearby time τ(x) such that φ(τ(x); x) is
in Σ. Then,

P(x) = φ(τ(x); x)

is the Poincaré map.

In the following theorem, we compare the eigenvalues of the Poincaré map with the
eigenvalues of the period map of the flow.
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Theorem 3.8.1 Assume that x∗ is on a periodic orbit with period T. Let Σ be a hyperplane
through x∗, formed by setting one of the variables equal to a constant; that is, for some
1 ≤ k ≤ n with fk (x∗) 6= 0, let

Σ = {x : xk = x∗
k}

Let P be the Poincaré map from a neighborhood of x∗ in Σ back to Σ. Then, the n
eigenvalues of Dxφ(T ;x∗) consist of the (n− 1) eigenvalues of DP(x∗), together with 1, the
latter resulting from the periodicity of the orbit.

3.9. Chaotic Attractors
The name chaotic attractors has been chosen to describe limit sets that exhibit a com-
plicated properties such as sensitivity dependence on initial conditions. There is no one
single definition for chaos. However, all definitions for a chaotic system have one common
feature which sensitive dependence on initial conditions.

Definition 3.9.1 A chaotic attractor is a transitive attractor A for which the flow has
sensitive dependence on initial conditions when restricted to A [13].

Strogatz [16] also defines chaos as follows:

Definition 3.9.2 Chaos is aperiodic long-term behaviour in a deterministic system that
exhibits sensitive dependence on intial conditions.

Remarks: ”Aperiodic long-term behaviour” means that trajectories which do not settle
down to fixed points, periodic orbits, quasiperiodic orbits as t → ∞.
”Deterministic” means that the system has no random or noisy input or parameters. The
irregularity arises from the nonlinear components of the system rather than noisy driving
forces.
”Sensitive dependence on initial conditions” means that nearby trajectories separate ex-
ponentially fast.
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4. The Lorenz Equations
The Lorenz equations are given by

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = xy − bz.

(4.1)

The parameters σ, r, and b are positive. Lorenz found these equations to model convective
rolls in the atmosphere in his research to find a mathematical model that could predict
the weather. Lorenz identified the parameter values σ = 10, b = 8/3 and r = 28 where
the equations reveal a strange behaviour. In this section, we study the properties and
dynamics of the Lorenz equations with the Lorenz parameter values σ = 10, b = 8/3
and r as a control parameter. The Lorenz equations have only two nonlinearities, the
quadratic terms xy and xz. The system is deterministic without any stochastic input,
however, it exhibits complicated dynamic and random behaviour. See figure 4.1. The
trajectory is regular up to t = 18, after which it becomes completely random for all future
times. The Lorenz system is sensitive to initial conditions. In figure 4.2, we show the

Figure 4.1: Random behaviour of the Lorenz system.

time series plot for x and t for the initial conditions x(0) = y(0) = z(0) = 1 (in blue)
and x(0) = 1.001, y(0) = 1, z(0) = 1 (in green). This reveals how 0.1 percent change
in the initial condition of the x variable makes a big difference in the solution. The
two x solutions are quite the same until at t = 10 after which they behave completely
different. At t = 11, we observe that the two solutions are on different sides. Lorenz
called this property “The butterfly effect”, which is a basic property of chaotic systems.
The system has a natural symmetry (x, y, z) → (−x,−y, z). Replacing (x, y) → (−x,−y)
does not change anything in the equation. Therefore, if (x(t), y(t), z(t)) is a solution,
then so is (−x(t),−y(t), z(t)). Generally, all solutions are either symmetric themselves,
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Figure 4.2: Time series plot for x and t for the initial conditions x(0) = y(0) = z(0) = 1
(in blue) and x(0) = 1.001, y(0) = 1, z(0) = 1 (in green).

or have a symmetric partner. This can be shown by a simple substitution of the above
transformation in the Lorenz equations,

− ẋ = σ(−(−x) + (−y)) ⇒ dx

dt
= σ(y − x)

− ẏ = r(−x)− (−y)− (−x)z ⇒ dy

dt
= x(r − z)− y

− ż = −b(z) + (−x)(−y) ⇒ dz

dt
= xy − bz.

The z-axis, x = 0 = y is invariant. All trajectories which start on the z-axis remain on it
and tend towards the origin (0, 0, 0). See definition 3.6.2.

4.1. Stationary Points
The system has two types of stationary points:

1. (x∗, y∗, z∗) = (0, 0, 0). The origin is a fixed point for all values of the parameter.

2. x∗ = y∗ = ±
√

b(r − 1), z∗ = r − 1, the symmetric pair C+ and C−.

4.2. Stability of the Origin
The linearized system is

ẋ = σ(y − x)

ẏ = rx− y

ż = −bz.

The equation for z is decoupled with solution z(t) = e−bt. This shows that z(t) approaches
zero exponentially fast. The other two directions are governed by the system(

ẋ
ẏ

)
=

(
−σ σ
r −1

)(
x
y

)
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We can determine the nature and stability by definition 3.3.2 and theorem 3.4.1. The
trace τ = −σ − 1 < 0 and determinant ∆ = σ(1 − r), hence the origin is saddle point if
r > 1. However, the system is three-dimensional and so this is a new type of saddle [16].
Now we have z decaying to the origin and the other two directions moving in opposite
direction in respect to the origin. Also, τ 2−4∆ = (σ+1)2−4σ(1−r) = (σ+1)2+4σr > 0,
and so we have stable node if r < 1 since all directions are sinking to the origin. The
eigenvalues are of the system’s Jacobian evaluated at the origin is

λ1 =
−(σ + 1) +

√
(σ + 1)2 + 4σ(r − 1)

2

λ2 =
−(σ + 1)−

√
(σ + 1)2 + 4σ(r − 1)

2
< 0

λ3 = −b < 0.

The eigenvalues λ2 and λ3 are negative for all values of r. The first eigenvalue λ1 is
negative for 0 < r < 1. We conclude that the origin is a sink (attracting) for r < 1 from
definition 3.3.2 and theorem 3.4.1.

4.3. Global Stability of the Origin
In fact, if r < 1 then all solutions of the Lorenz system approach the origin as t → ∞. We
show that the origin is globally stable (see definition 3.4.1) by constructing the Lyapunov
function [16],

V (x, y, z) =
1

σ
x2 + y2 + z2.

The surfaces of constant V are concentric ellipsoids about the origin. We want to show
that if we start from any point on the concentric ellipsoids, we keep moving to smaller
ellipsoids as t → ∞. However V is a positive function with local minimum at the origin
(thus bounded from below by the origin) and so V (x(t)) → 0, thus x(t) → 0 as we expect.

1

2
V̇ =

1

σ
xẋ+ yẏ + zż

=
(
yx− x2

)
+
(
yx− y2 − xyz

)
+
(
zxy − bz2

)
= (r + 1)xy − x2 − y2 − bz2.

b is a positive parameter, therefore the last three terms are all negative. But, the sign of
xy changes depending on the sign of x and y. However, completing the square gives

1

2
V̇ = −

[
x− r + 1

2
y

]2
−

[
1−

(
r + 1

2

)2
]
y2 − bz2.

From the above, V̇ is clearly non positive. But from the theorem, we need to investigate
if V̇ could be zero. We see that before V̇ could be zero, every term on the right side must
be zero. The last term could be zero only if z = 0 since b is non-negative parameter. The
second term is zero only if y = 0. This is because, the assumption that r < 1 makes what
is in the square bracket non zero. Now if y = 0 then we will be left with −x2 from the first
term, which is also zero if and only if x = 0. This means V̇ = 0 only if (x, y, z) = (0, 0, 0),
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but we have already excluded the origin from the beginning of our proof. See theorem
3.4.2. This proves that the origin is globally stable for r < 1. The global stability of the
origin shows that λ1 cannot be complex, thus no limit cycles or chaos for r < 1. We realise
a supercritical pitchfork bifurcation at the origin as r varies through 1. This results in
the birth of the two other symmetric fixed points C+ and C−.

4.4. Stability of the Symmetric Equilibrium Points
We recall the other equilibrium points C±:

x∗ = y∗ = ±
√
b(r − 1), z∗ = r − 1

The Jacobian matrix evaluated at these equilibrium points is

Jc± =

 −σ σ 0

1 −1 ∓
√
b(r − 1)

±
√

b(r − 1) ±
√

b(r − 1) −b


C+ and C− have the same eigenvalues and the characteristic polynomial has the form

Pr(λ) = λ3 + (b+ σ + 1)λ2 + b(r + σ)λ+ 2bσ(r − 1)

The result of computing the eigenvalues is cumbersome and not helping. However, we
can extract some information from the characteristics polynomial. Applying the Routh
Hurwitz stability criterion discussed in section 3.4.1 to the characteristic polynomial, we
obtain the array;

λ3 1 b(r + σ)
λ2 b+ σ + 1 2bσ(r − 1)
λ1 H 0
λ0 2bσ(r − 1) 0

where
H =

b(r + σ)(b+ σ + 1)− 2bσ(r − 1)

b+ σ + 1

For stability, we expect H > 0, thus the system is stable if

b(r + σ)(b+ σ + 1)− 2bσ(r − 1)

b+ σ + 1
> 0

which is the point when
r >

σ(σ + b+ 3)

σ − b− 1

What if H = 0? This is possible. In this case, the system experiences the case (see case
2 of section 3.4.1) where

b(r + σ)(b+ σ + 1) = 2bσ(r − 1).

As discussed earlier, this signals that imaginary roots or roots of the form (λ+ p)(λ− p)
are present. This is because the system is symmetric. Making use of the Descartes’ thee-
orem, the characteristic polynomial has either all three roots negative or a negative root
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and two complex roots. See theorem 3.4.3. In any case, there is a negative root and no
positive root.

Positive Negative Imaginary Total
0 3 0 3
0 1 2 3

Descartes’s theorem shows that Pr(λ) may have complex roots. For fixed values of σ =
10, b = 8/3, we study the behaviour of C+ and C− as r varies. Numerical simulation shows
that for r near 1, the eigenvalues are all real. Plotting the graph of the characteristic
polynomial as r increases indicates that for about r ≥ 1.3456, there is only one real root
which implies the existence of pair of complex eigenvalues. The real part of the complex
eigenvalues is negative for small r > 1.3456. See figure 4.3.
We want to investigate if Pr(λ) can have purely imaginary roots. We assume λ = iω as
eigenvalues and substitute λ = iω in Pr(λ) and equating the real and imaginary parts of
Pr(iω) to zero. Thus;

−iω3 − ω2(σ + b+ 1) + iωb(r + σ) + 2bσ(r − 1) = 0
iω (−ω2 + b(r + σ))− ω2(σ + b+ 1) + 2bσ(r − 1) = 0

Equating the real and imaginary parts to zero, we obtain

ω2 = b(r + σ) =
2bσ(r − 1)

σ + b+ 1

(r + σ)(σ + b+ 1) = 2σ(r − 1)

rh =
σ(σ + b+ 3)

σ − b− 1
, σ > b+ 1

For σ = 10 and b = 8/3, there is a pair of purely imaginary eigenvalues at rh ≈24.74
we have that C+ and C− are stable in the parameter range 1 < r < 24.74. For values
of r near rh, there is a “center manifold”, a two-dimensional surface, toward which the
system attracts. The orbit appears for values of r < rh and is unstable within the center
manifold. The periodic orbit is a saddle in the whole phase space since the real root is
negative for all r [13]. At r = rh, the system experiences a subcritical Hopf bifurcation
as the equilibrium points lose their stability by absorbing a non-stable periodic orbit [13].
When the complex eigenvalues cross the imaginary axis, the periodic orbit die in Hopf
bifurcation at the fixed points C+ and C−. When r > rh, the complex roots have positive
real part and C+ and C− are unstable.
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Figure 4.3: Plot of the characteristic polynomial for (a) r = 1.2, (b) r = 1.5, (c)r =
1.3456171795, (d)r = 1.3456171795.

4.5. Homoclinic orbits and Bifurcation
In [15], C. Sparrow discusses the homoclinic orbits (see section 3.5) of the Lorenz system.
When r > 1, the two dimensional stable manifold of the origin (a sheet-like plane) from
which the trajectories tend towards the origin divides R3 into two halves. Trajectories
started in one half-space converge to C+ whereas trajectories started in the other half-
space converge to C−. The stable manifold trajectories of the origin tend towards the
origin [15]. For r′ = 13.926, the spirals formed by the trajectories starting on the unstable
manifold of the origin by the positive eigenvalues at the origin grow larger and larger. For
r > r′, trajectories started on the unstable of the origin will lie in the stable manifold of the
origin and will therefore tend, in both forwards and backwards time, towards the origin.
Thus, a homoclinic orbit is formed with the stationary point at the origin.[14], proves the
existence of homoclinic orbit of the Lorenz system when r′ = 13.926, b = 8/3 and σ = 10.
We show here by graphs, the existence of homoclinic orbits at the origin of the Lorenz sys-
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tem. We take two parameters 13 < 13.926 and r = 14 > 13.926 and study the behaviour
of the trajectories starting from the same initial point (0.1, 0.17143, 0.00101) in space and
x− y projection respectively. The trajectory starting from the initial point (0.1, 0.17143,
0.00101) tends to C+(5.6569,5.6569,12) for the parameters r = 13, σ = 10, b = 8/5. See
figure 4.4 for the graph in space and the corresponding x− z projection. The trajectory

Figure 4.4: Graph of (0.1, 0.17143, 0.00101) converging to C+(5.6569, 5.6569, 12) (a) in
space and (b) corresponding x–z projection for the parameters r = 13, σ = 10, b = 8/3.

starting from the initial point (0.1, 0.17143, 0.00101) tends to C−(−5.8878,−5.6569, 13)
for the parameters r = 13, σ = 10, b = 8/5. See figure 4.5 for the graph in space and the
corresponding x−z projection. The trajectory starting from the initial point (0.1, 0.17143,

Figure 4.5: Graph of (0.1, 0.17143, 0.00101) converging to C−(−5.8878,−5.6569, 13) (a)
in space and (b) corresponding x–z for the parameters r = 13, σ = 10, b = 8/3.

0.00101) with the parameters σ = 10, b = 8/3 forms a homoclinic orbit at the origin at
r′ = 13.926. See figure 4.6 for the graph in space and the corresponding x–z projection.
We see the formation of a homoclinic orbit even better as we get closer to the origin. See
figure 4.7 for the homoclinic orbit at the origin starting from the initial condition (0, 0.5,

36



4. THE LORENZ EQUATIONS

Figure 4.6: Homoclinic orbit formed (a) in space (b) corresponding x – z projection at
(0.1, 0.17143, 0.00101) for the parameters.σ = 10, b = 8/3 and r′ = 13.926

0) with the parameters r′ = 13.926, σ = 10, b = 8/3 The positive semi-orbit and negative-

Figure 4.7: Homclinic orbit formed (a) in space (b) corresponding x–z projection at
(0,0.5,0) for the parameters σ = 10, b = 8/3 and r′ = 13.926.

semi orbit intersect at (0.00306236832762012, - 0.00229328921050086,1.8176). At this
point the Lorenz system forms a homoclinic orbit [14].
The table below present a summary of the Lorenz system for different values and range
of r.
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r value Bifurcation for the Lorenz system
1 < r The origin is unstable, with two negative eigenvalues and one positive

eigenvalue.
1 < r < rh The equilibrium points C± are stable. Forr larger than about 1.35,

there is one negative real eigenvalue and a pair of complex
eigenvalues with negative real parts

r = r
′ The system experiences a homoclinic bifurcation of periodic orbit

which continues up to the subcritical Andronov-Hopf bifurcation at
r = rh

r = rh There is a subcritical Andronov-Hopf bifurcation.
The periodic orbit can be continued back to the
homoclinic bifurcation at r = r

′

rh < r The fixed points C± are unstable. There is one negative
real eigenvalue and a pair of complex eigenvalues with positive parts.

r = 28 A chaotic attractor is observed.

Table 4.1: Bifurcation for the Lorenz system as r-varies.

4.6. Preturbulence
The stationary points C+ and C− are stable (attracting) before the rh - Hopf bifurcation
as discussed earlier, so trajectories eventually spirally in toward one of them. However,
the trajectories wander close to the stationary point. This phenomena is known as pre-
turbulence. See figure 4.8.

Figure 4.8: preturbulent trajectory at r = 22.4 before spiralling into C+.

According to [15], the average time of wandering by a trajectory which wanders at all,
tends to infinity when rA ≈ 24.06. Not all trajectories will show preturbulent behaviour
in r < rA. Trajectories started near the origin do not show preturbulent behaviour. Also,
trajectories started close to the stationary points C+ and C− converge to these stationary
points without wandering near the strange invariant set [15].

4.7. Chaos on a Strange Attractor
We continue our analysis for r > rA, particularly for the famous parameters σ = 10, b =
8/3, r = 28 as used by Lorenz. The solutions settle into an irregular oscillation that
persists as t → ∞, but never repeats exactly [16]. See figure 4.9. Notice the motion
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r value Description
0 < r < 1 The origin is globally stable.
1 < r The origin is non-stable. The flow linearized around the origin has

two negative, and one positive, real eigenvalues.
1 < r < rh The stationary points C± are stable.All three eigenvalues of the flow,

linearized about C+ and C− have negative real part.
Providing r > 1.346 (σ= 10.b=8/3) there is a complex conjugate pair
of eigenvalues.

rh < r The stationary points C± are non-stable. The flow linearized around
C+ and C−, has one negative real eigenvalue and a complex
conjugate pair of eigenvalues with positive real part.

r > 24.74 All three stationary points are non-stable.

Table 4.2: Summary of results of the Lorenz system.

is regular for some few time and then jumps into an unending, unpredictable irregular
motions. The x− y phase space is shown in figure 4.9 The trajectories do not cross each

Figure 4.9: x – z phase space at (0, 1, 0) for the Lorenz parameters.

other as they appear. There is no self - intersections occurring in the above figure. The
trajectory starts near the origin, then swings to the right and dives into the center of a
spiral on the left. It orbits outwards slowly, and then shoots over to spiral around the
left loop, jumping forth and back indefinitely. The number of orbiting it makes on either
side varies unpredictably from cycle to the next. Table 4.2 presents a summary of the
analysis of the Lorenz system. The switching between left and right correspond to the
irregular reversals of the waterwheel [16].
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4.8. Lorenz Map
Most of the analysis of the Lorenz system has used the Poincaré map. Lorenz wanted to
know when the trajectory jumps from the center after a number of spiral. Lorenz’s idea
is that, looking at successive maximum zn of the z-coordinate along an orbit, zn should
predict zn+1 [16]. By, this he observed that the trajectory leaves one spiral only after
exceeding some critical distance from the center. This shows that the Lorenz system has
some predictive characteristics. The way to do this is to extract the chaotic solution z(t)
after a large number of iterations on the strange attractor. The maxima zn is further
extracted from z(t), and successive pairs of maxima (zn, zn+1) plotted. See figure 4.10.
The function zn+1 = f(zn) is called the Lorenz map. According to the map, for a
given z0, we can predict z1 by z1 = f(z0). For such a chaotic and random process,

Figure 4.10: The Lorenz map. Source [16].

one may expect a scatter plot. However, the graph shows a quite well-defined relation
between successive peaks. Lorenz is right, information about the nth peak gives a good
estimate of the next peak, however this is possible for short period. This shows that
the solutions of the Lorenz equations have short term predictability. Lorenz discovered
some order in the chaos. It also worth mentioning that the Lorenz map is not exactly the
Poincaré map we studied in chapter 3, in the sense that, to construct a Poincaré map,
for a three-dimensional surface, we compute a trajectory’s successive intersections with a
two-dimension surface. The Poincaré map takes a point on that surface, specified by two
coordinates, and then tells us how those two coordinates change after the first return to
the surface. In the case of the Lorenz map, the map characterizes the trajectory by only
one number, not two.
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5. Models of the Lorenz Equations
In this chapter we study how the Lorenz equations simulate the chaotic waterwheel

as shown by Malkus and Howard at MIT in 1972 and the atmospheric convective model.

5.1. Model for a Waterwheel
The chaotic waterwheel system serves as a mechanical analogue to the Lorenz equation.
It was invented by Willem Malkus and Lou Howard at MIT in 1972 to simulate Lorenz
equations. We will describe the mechanical model and derive the equations that governs
it following [16]. We will then map the waterwheel equations onto Lorenz’s equations
following [4].

5.1.1. Description of the Waterwheel
The wheel is slightly tilted from the horizontal to allow horizontal rotation of the wheel
in both directions (left and right). See figure 5.1.3. Water sprays out through dozens
of small nozzles of an overhanging manifold connected to a water pump into separate
transparent chambers around the rim of the wheel.
Food colouring is added to the water for easy visibility of the distribution of water around
the rim. Each chamber has small hole at the bottom to allow leakage as water fills the
champers. The leaked water is collected underneath the wheel, where it is pumped back
up through the nozzles to provide a steady input of water.
The system allows for change of parameters in two ways. A brake on the wheel can be
adjusted to add more or less friction. The tilt of the wheel can be varied by turning a
screw that props the wheel up; this alters the effective strength of gravity [4].
A sensor measures the wheel’s angular velocity ω(t), and sends the data to a strip chart
recorder which then plots ω(t) in real time [4].

5.1.2. The Waterwheel Equations
Now we begin the construction of equations that describes the motion of the waterwheel,
to find the mass distribution of water around the wheel’s perimeter m(θ, t) and the angular
velocity of the wheel ω(t). We first identify components contributing to the motion the
system.

5.1.3. Conservation of Mass
Water collected underneath the wheel is pumped back into the nozzles to restart the whole
process. This means water is conserved. Consider any sector[θ1, θ2] fixed in space through
which the wheel rotates into and out of, as illustrated in the figure 5.2. In this sector, the
mass of water changes as a result of rotation of the wheel, the spraying of water into the
chambers, and the leakage (outflow) of water out through the hole at the bottom of the
chambers.
This can be described mathematically as

dMtotal

dt
= Rotation + inflow + outflow (5.1)
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Figure 5.1: The top and side view of the waterwheel, Source [16]

Consider the contribution of the rotation of the wheel. As shown in figure 5.2, let ω∆t
be the angle travel in time ∆t at start of the sector denoted θ1. The mass of water at
any point in time as it travels toward the other end of the sector marked θ2 would be
m(θ1, t)ω∆t.
Similarly, the mass of water at any point in time leaving the sector through θ2 would
be obtained as m(θ2, t)ω∆t. As such, the rate of mass of water resulting from the ro-
tation of water at θ1 and θ2 are respectively obtained as dMR1 = m(θ1, t)ω∆dt and
dMR2 = m(θ2, t)ω∆dt after an infinitesimal time ∆t. And so, the total contribution to
total mass of water in the sector [θ1, θ2] due to rotation in the mass change is given as
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Symbol Description Units ($)
Mtotal(t) total mass of water in the wheel kg
m(θ, t) mass distribution of water around kg/rad

the wheel’s perimeter
θ angle in our lab frame rad
ω(t) angular velocity of the wheel rad/s
Q water inflow rate kg/sec
g0 acceleration due to gravity m/s2
Rp radius of the pipes at the bottom m

of the syringes
lp length of the pipes at the bottom of the syringes m
vw viscosity of water cm2/s2
τ torque on the wheel N · m
I moment of inertia of the wheel kg · m2/s
α angle of inclination of the wheel deg
r∗ radius of the wheel m
γ strength of the magnetic brake kg · m2/s
v translational velocity of the wheel m/s
a translational acceleration of the m/s2

wheel
an, bn amplitude coefficients in Fourier series of mass m
qn amplitude coefficients in Fourier series of inflow kg/s

Table 5.1: Symbols used in model of the wheel. Source [4]

Figure 5.2: Sector view of the waterwheel, Source [16]

dMrotation

dt
= ω(t) [m (θ1, t)−m (θ2, t)] = −ω(t)

∫ θ2

θ1

∂m(θ, t)

∂θ
dθ (5.2)

Next we consider the contribution by the outflow. Again as we said in the model descrip-
tion, the hole at the bottom of the chambers allows for a flow (pressure-induced flow) as
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water leaks collect underneath the system. The drain or leak is proportional to the mass
of water is in the chamber – more water implies a larger pressure, hence faster leakage

dMoutflow

dt
= −k

∫ θ2

θ1

m(θ, t)dθ (5.3)

where k is the rate of leakage. We now consider the final component, inflow. Inflow
depends on the rate at which water is pumped in through the nozzle. So we have that

dMinflow

dt
=

∫ θ2

θ1

Q(θ)dθ (5.4)

The total mass change is therefore obtained by putting all the mass change equations
together,

dMtotal

dt
=

∫ 2π

0

∂m

∂t
dθ =

∫ 2π

0

(
−ω

∂m

∂θ
+Q− km

)
dθ (5.5)

which is same as
∂m

∂t
= Q− km− ω

∂m

∂θ
(5.6)

Equation (5.6) is called the continuity equation [16].

5.1.4. Torque Balance
Now we will discuss the force causing the motion of the wheel. Torque is the force causing
the rotation of the wheel. There are two kinds of torque at play here, thus the damping
torque and gravitational torque. Let I be the moment of inertia of the wheel. Then the
equation of motion of the wheel is

τ = damping force + gravitational torque

where g, is the standard acceleration due to gravity, 9.8m/s2. The gravity pull on the
chambers is given as

~Fgravity = mg0 sinα

which exerts a torque with magnitude

τgravity = ~r∗ × ~Fgravity = r∗mg0 sinα sin θdθ

where r∗ is the radius from the wheel’s axle to the centre of the chamber. Integration
over all mass elements yields

τgravity = gr∗
∫ 2π

0

m(θ, t) sin θdθ (5.7)

where g = g0 sinα. There are two sources of damping: viscous damping due to the heavy
oil in the brake, and damping due to the speeding up of water with zero angular velocity
– the water enters the wheel at zero angular velocity but is spun up to angular velocity ω
before it leaks out [4]. Both these effects product torques proportional to ω, so we have

damping torque = −vω
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where v > 0, with the negative sign implying that the damping opposes the motion. We
sum them up to get

Iω̇ = −vω + gr∗
∫ 2π

0

m(θ, t) sin θdθ. (5.8)

So the two equations governing the wheel are

ṁ = Q− km− ω
∂m

∂θ
(5.9)

Iω̇ = −vω + gr∗
∫ 2π

0

m(θ, t) sin θdθ. (5.10)

5.1.5. Amplitude Equations
The two equations are not easy to solve and this tells how complicated the motion is.
However, we can extract the needed information without having to solve explicitly. The
wheel is round and so we can consider the periodicity of mass distribution water in ω.
For this reason we can rewrite the equations of the system by Fourier analysis. Since
m(ω, t) is periodic in ω, we we can write it as a sum of various harmonics where an and
bn amplitude coefficients for each sine and cosine term respectively:

m(θ, t) =
∞∑
n=0

[an(t) sinnθ + bn(t) cosnθ] (5.11)

Similarly, we can write the inflow as a Fourier series:

Q(θ) =
∞∑
n=0

qn cosnθ. (5.12)

Unlike equation (5.11), equation (5.12) has no sinnθ terms in the series. This is because
water is added symmetrically at the top of the wheel; the same inflow occurs at θ and −θ
[16]. Now we can substitute the Fourier series equations into equations (5.9) and (5.10) to
get a set of ODEs, thus the amplitude equations for the amplitudes an, bn of the different
harmonics [16]. We get

∂

∂t

[
∞∑
n=0

an(t) sinnθ + bn(t) cosnθ

]
=− ω

∂

∂θ

[
∞∑
n=0

an(t) sinnθ + bn(t) cosnθ

]

−K

[
∞∑
n=0

an(t) sinnθ + bn(t) cosnθ

]
+

∞∑
n=0

qn cosnθ.

(5.13)
Now we carry out differentiate on both sides, and collect terms. By orthogonality of the
functions sinnθ, cosnθ, we can equate the coefficients of each harmonic separately [16].
We get for the sine coefficients,

∂

∂t
an = nωbn − kan (5.14)
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Similarly, matching coefficients of gives
∂

∂t
bn = −nωan − kbn + qn (5.15)

In same way, we substitute the Fourier series for the torque. This gives

τtotal = Iω̇ = −vω + gr∗
∫ 2π

0

[
∞∑
n=0

ant sinnθ + bnt cosnθ

]
sin θdθ

= −vw + gr∗
∫ 2π

0

a1 sin2 θdθ

= −vω + πgr∗a1.

(5.16)

Again by the orthogonality of the sine, cosine functions inside the integral, only one term
makes it past the integration [16]. This is the reason why we get only a1 in the resulting
torque equation. We can see from (5.14), (5.15) and (5.16) that a1, b1, and ω form a closed
system and decouple from all the other an and bn where n 6= 1, we can solve the system
without them. Therefore ignoring all equations (5.14) and (5.15) where n 6= 1, we end up
with only three equations

ȧ1 = ωb1 − ka1
ḃ1 = −ωa1 − kḃ1 + q1
ω̇ = −vω+πgr∗a1

I
.

(5.17)

The system of equations (5.17) is similar to the Lorenz system (4.1). It has two nonlinear
components just like the Lorenz system. In the rest of this section, we discuss properties
of the waterwheel equations (5.17) and the similarities between the Lorenz system (4.1)
and the waterwheel system (5.17).

5.1.6. Fixed Points of the Waterwheel Equations
As usual, we find the fixed points of the system of equations (5.17) by setting all the
derivatives equal to zero. This yields;

a1 =
ωb1
k

(5.18)

a1 =
q1 − kb1

ω
(5.19)

a1 =
vω

πgr∗
(5.20)

Equating equations (5.18) and (5.19), we obtain b1 as

b1 =
q1k

ω2 + k2
. (5.21)

Equating (5.17) and (5.19) yields
ωb1
k

=
vω

gr∗π

ω(b1gr
∗ − vk) = 0,

which implies either ω = 0 or b1 = kv/gr∗π. We obtain two kinds of fixed points to
consider:
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1. ω = 0: if ω = 0, then a1 = 0 and b1 = q1/k so we get the fixed point, (a1, b1, ω) =
(0, q1/k, 0). This means the wheel has no angular velocity. Thus the wheel is at rest
symmetrically by the water in each chamber. We have the inflow of water balanced
by leakage. In the Lorenz system, this is the fixed point at the origin.

2. ω 6= 0: if ω 6= 0, then b1 = kq1/ω
2 + k2 = kv/πgr∗, k 6= 0 and

ω2 =
πgr∗q1

v
− k2 (5.22)

There are two possible solutions ±ω for equation (5.22), corresponding to a constant
angular velocity or steady rotation in either direction. However, the solution exists
if and only if

πgr∗q1
k2v

> 1 (5.23)

since angular velocity cannot be imaginary.

The fraction πgr∗q1/k
2v in (5.23) is the ratio of forcing to the damping of the waterwheel.

It is called the Rayleigh number. This is the parameter r in the Lorenz system (4.1).
The parameters g and q1 (gravity and inflow) in the number of the Rayleigh represent
the driving of the wheel, whereas the parameters v and k (damping forces and leakage)
represent the dissipation of the rotation of the wheel [4]. And so the Rayleigh number
gives a measure of how much the damping forces and leakage/outflow is dissipating the
driving force of the waterwheel.
In (5.23), πgr∗q1 > k2v implies that a steady motion is possible only if the driving force
is large enough to overcome the dissipation (stopping force) [4]. The applications of the
Rayleigh number is much prevalent in fluid problem. This was obtained by Lord Rayleigh
when he studied the problem of a thin layer of fluid heated from below or cooled from
above. He achieved a straightforward criterion, the Rayleigh number is proportional to
the temperature difference from bottom to top. No convective motion is observed at low
values of the Rayleigh number, the fluid transports heat exclusively by molecular heat
diffusion. However, at Rayleigh number slightly exceeding a critical value, an instability
occurs. Fluid at the bottom (close to the heat source) get hot and less dense and start
to rise to the top while the cold heavy fluid on top begins to sink simultaneously. The
pattern becomes unstable and the convection eventually becomes chaotic as the Rayleigh
number is several times the critical value.
This is not only comparable to the atmospheric convections (where air close to the earth
surface get less dense and rise to the top forming clouds above while cold air sinks closer to
the earth) but also to the steady rotation of our waterwheel. At higher Rayleigh number,
the system becomes turbulent, and the convective motion becomes complex in space and
breaks the analogy to our waterwheel. At this point the convection roll remains chaotic
while the waterwheel settles into a pendulum-like pattern of reversals, turning once to
the left, then back to the right, and so on indefinitely. We can achieve this contrast in
our waterwheel by setting the angle of inclination high with a low breaking force.
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5.1.7. Relating the Waterwheel Equations to the Lorenz Equa-
tions

We are ready to map or relate the two systems of equations. Recall the Lorenz’s equations:

ẋ = σ(y − x) (5.24)

ẏ = rx− y − xz (5.25)

ż = xy − bz (5.26)

and the waterwheel equations;

ȧ1 = ωb1 − ka1
ḃ1 = −ωa1 − kb1 + q1
ω̇ = −vω+πgr∗a1

I
.

By examining the position of the variables of the Lorenz equations and the waterwheel
equations, we can match the two system of equations as follows

ω̇ =
gr∗a1π − vω

I
⇔ ẋ = σ(y − x) (5.27)

ȧ1 = ωb1 − ka1 ⇔ ẏ = rx− y − xz (5.28)

ḃ1 = −ωa1 − kb1 + q1 ⇔ ż = xy − bz (5.29)

The Lorenz equations are dimensionless [4]. The waterwheel equations are dimensional
and so the first thing we need to do is to transform the waterwheel equations into a
dimensionless form. We will achieve this by a simple change of variables of the waterwheel
equations which sets them to a dimensionless form and then match the corresponding
variables of the two sets of equations.

5.1.8. Change of Variables
We create a relation between corresponding variables of the equivalent equations. For
instance to obtain the Lorenz variable x from the waterwheel variable ω (we already said
these two variables are equivalent), we divide ω by some constant γ (which is same unit
as ω) in order to make this term dimensionless (since the units cancel out).

x =
ω

γ

We add x0 as an offset
x = x0 +

ω

γ

ω = γ(x− x0)

Similarly
y = y0 + a1/α ⇒ a1 = α (y − y0)

z = z0 + b1/b ⇒ b1 = b (z − z0)

48



5. MODELS OF THE LORENZ EQUATIONS

and also a dimensionless time
T =

t

τ
⇒ t = Tτ

where γ,α,b and T are constants. ω,b1 and a1 are variables of the waterwheel equations.
So we have from equation (5.27)

dω

dt
= ω̇ =

∂γ (x− x0)

∂Tτ
=

γ

T

dx

dτ
=

γ

T
ẋ ⇒ ẋ =

T

γ
ω̇ (5.30)

Therefore we can write that

σ(y − x) =
T

γ

(
gr∗a1π − vω

I

)
.

Substituting for a1 = α(y − y0)

σ(y − x) =
T

Iγ
(gr∗πα (y − y0)− vγ (x− x0))

we simplify the terms on the right in order to match terms

σ(y − x) =
T

Iγ
(−vγx+ vγx0 + πgr∗αy − πgr∗αy0)

we obtain the following by matching the terms

T

I
v = σ (5.31)

T

Iγ
πgr∗α = σ ⇒ α =

vγ

πgr∗
(5.32)

Likewise, from equation (5.28)

da1
dt

= ȧ1 =
∂α (y − y0)

∂Tτ
=

α

T

dy

dτ
=

α

T
ẏ ⇒ ẏ =

T

α
ȧ1

we can write that
rx− y − xz =

T

α
(ωb1 − ka1)

substituting for ω = γ(x− x0), a1 = α(y − y0), b1 = b(z − z0)

rx− y − xz =
T

α
(γbxz − γbz0x− γbx0z + γbx0z0 − kαy + kαy0)

Matching components yields
Tk = 1 (5.33)

T

α
γb = −1 (5.34)

− T

α
γbz0 = r (5.35)

τ

α
(−γbx0z + γbx0z0 + kαy0) = 0 (5.36)
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Equation (5.34) combined with equation (5.35) gives z0 = r. In the last equation, z0 6=
0, k 6= 0, α 6= 0, γ 6= 0 implies that x0 = y0 = 0. Finally, we get for the last relation

db1
dt

= ḃ1 =
∂b (z − z0)

∂Tτ
=

α

T

dz

dτ
=

α

T
ż ⇒ ż =

T

b
ḃ

We can write that
xy − bz =

T

b
(−ωa1 − kb1 + q1)

Again we substitute to obtain

xy − bz =
T

b
(−γαxy + γαxy0 + γαx0y − γαx0y0 + kb− kbz + kbz0 + q1)

Tγα = −1 (5.37)

Tk = b (5.38)
T

b
(γαy0x+ γαyx0 − γαy0x0 + kbz0 + q1) = 0 (5.39)

Equation (5.37) with equation (5.34) yields α = ±b. Also equation (5.38) with equation
(5.33) implies Tk = b = 1. Substituting x0 = y0 = 0 into equation (5.39), we end up with

kbz0 + q1 = 0 ⇒ z0 = − q1
bk

(5.40)

Finally, equation (5.37) and equation (5.38) with α = −b gives γ = k. And so the
waterwheel is equivalent to the Lorenz equation if

a1 = αy =
vγ

πgr
y =

kv

πgr
y

b1 =
−kv

πgr
z +

q1
k

ω = kx

T =
1

k

σ =
v

kI

and the Rayleigh number
r =

πgr∗q1
k2v

.

Also, Tk = b = 1 tells us the waterwheel is a specific case of the Lorenz equations.
The waterwheel equation translates into the Lorenz equation when the Lorenz parameter
b = 1.
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5. MODELS OF THE LORENZ EQUATIONS

5.2. Atmospheric Convective Model
In 1963, Lorenz in his attempt to predict the weather with a much easier-to-analyse model
than partial differential equations discovered the system of equations (4.1), named after
E. N. Lorenz. The Lorenz system also describes the convection rolls in the atmosphere.
That is, air particles close to the earth get heated up and becomes less dense and as a
result, rises up into the atmosphere where it gets cooled. The uprising of less dense air
particles are replaced by a relatively dense layer of air particles closer to the earth. The
process continues, forming what is called convective rolls.
In Lorenz’s work, he considered a two-dimensional fluid cell that was heated from below
and cooled from above. The heating causes changes in the temperature of the fluid.
This change corresponds to the varying of the control parameter, Rayleigh number in our
analysis. The difference in temperature plays a role similar to the difference of the rate
of adding water for the waterwheel . The chaotic orbits correspond to the atmosphere
forming a convective roll in one direction for a length of time and then reversing and
rolling in the other direction. The number of rolls in each direction before the reversal is
apparently random [13].
He simplified the infinitely many variables involved into the three dimensional system of
equations (4.1). The independent variable is the rate of convective “overturning”, y and z
measures the horizontal and the vertical temperature variation respectively . The system
parameters are; the Prandtl number σ, the Rayleigh number r, and b that is related to
the physical size of the system [13].

Figure 5.3: Convection rolls for fluid.
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6. Conclusion
In conclusion, the goals of the thesis as proposed earlier have been achieved. Impor-

tant concepts of the field of dynamics such as equilibrium points, stability, linearization,
bifurcation, Lyapunov function, Poincaré map, strange attractors and chaos are studied.
Also, a description of how the Lorenz equations arise in various models are studied. How-
ever, it is worth noting that this is just a tip of the iceberg. There is still much to study
about the Lorenz equations.
In view of this, we recommend that furhter study of the subject include Tent map, Warwick
Tucker’s computer assisted proof, geomeotric model of the Lorenz equations as introduced
by Guckenheimer and the Lyapunov exponent as a tool to measure chaos. We also pro-
pose further studies for r beyond the value of 28.
Another interesting topic for study is to consider the variation of the other parameters σ,
b and not just r.
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